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Preface

Since the launch of the fi rst earth observation satellite ERTS-1 in 1972 much eff ort has 

been made to develop suitable and scientifi cally sound methods of information extraction 

from digital images. Over the years, Remote Sensing has proven to be a valuable tool for 

identifying objects at the earth’s surface and for measuring and monitoring important 

biophysical characteristics and human activities on the terrain. Since the early days of earth 

observation, numerical methods of spectral analysis have been used to extract information 

from these digital images. Because computer power was limited, few spectral bands were 

recorded at pre-selected frequencies and visualization methods were very basic, it was only 

possible to transform the raw pixel data into meaningful classes on a pixel-by-pixel basis; one 

simply did not have the tools to analyse large amounts of remotely sensed digital data over a 

wide range of frequencies of light.

Th e 1980s saw the development of spectral-based algorithms for image analysis and image 

classifi cation which were included in various kinds of image processing software packages. 

During the 1990s, spectral image analysis fl ourished anew when hyperspectral sensors 

with hundreds of spectral bands became available. Computers were much more powerful 

than before and visualization techniques had matured. Th e high spectral resolution images 

permitted the recording of spectral data in many spectral bands, which allowed the use of 

absorption feature identifi cation and the application of sub-pixel methods such as spectral 

mixture analysis.

Spectral image analysis methods produce for many cases satisfying results but sometimes 

they fail to produce good results because not all the objects at the earth surface have unique 

spectral signatures. As a result, objects with similar spectral signatures cannot be spectrally 

separated and additional information is required to distinguish them. Information captured 

in neighbouring cells or information about patterns surrounding the pixel of interest 

may provide useful supplementary information. Th is type of information is referred to as 

information from the spatial domain. In spite of the extra amount of information available, 

initially there were relatively few eff orts to extract the spatial information captured in the 

new, detailed airborne and spaceborne images.

Initially, only a few pioneers explored the methods and techniques of spatial analysis for 

remote sensing, among them P.J. Curran, D.L.B. Jupp, S.W. Wharton and C.E. Woodcock. 

Th e fact that spatial analysis received so little attention is suprising because spatial patterns 

in images may contribute signifi cantly to image analysis and image classifi cation. It is also 

surprising that the spatial aspects of image analysis received so little attention during the 

seventies and eighties because many environmental disciplines such as geography, ecology, 

soil science and forestry have a long history of coping with spatial patterns. In the past 

these disciplines developed intelligent hierarchical mapping systems like the physiographic 

approach of the CSIRO, Australia, or the Agro-Ecological Zones mapping method of the 
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United Nations Food and Agricultural Organisation (FAO). Only recently, have a wide range 

of researchers from various disciplines paid attention to spatial patterns in remotely sensed 

images and have studied how they can aid information extraction.

Th e objective of this book is twofold: 1) to bring together several new methods and 

approaches for analyzing and quantifying spatial patterns present in earth observation images, 

and 2) to illustrate these methods and techniques for a wide range of applications under 

varying natural conditions. Th e methods and techniques brought together in the chapters in 

the beginning of the book comprise diff erent types of variogram analysis, various methods 

for texture quantifi cation, smart kernel operators, pattern recognition, image segmentation 

methods, sub-pixel methods, wavelets and advanced spectral mixture analysis techniques. 

Th e eff ectiveness and the innovative aspects of these methods and techniques are illustrated 

in chapters 5 to 13 by a wide range of applications ranging from natural vegetation surveys 

in diff erent types of landscapes, through general land cover mapping, urban mapping and 

geological applications such as mineral abundance and seepage mapping.

Th e book brings together contributions written by renowned researchers from all over 

the world and from a wide range of disciplines. Th e book is meant for professionals 

and researchers who use remote sensing image analysis, image interpretation and image 

classifi cation in their work. It is also intended as a textbook and reference for PhD students 

and graduates in disciplines such as geography, geology, botany, ecology, forestry, cartography, 

water resource management, soil science, engineering, urban and regional planning or other 

disciplines using geospatial data extracted from earth observation imagery.

Th is book on ‘Remote Sensing Image Analysis: Including the Spatial Domain’ is a follow-

up to a previous publication (2001) entitled ‘Imaging Spectrometry: Basic Principles and 

Prospective Applications’ by the same editors. Th at book emphasized the need for improved 

identifi cation of objects at the earth’s surface, the improvement of sensors such as Landsat 

TM and SPOT and the improved quantifi cation of object properties, using a wide range of 

spectrally based analytical image processing techniques. Th is, second book shifts the attention 

from spectrally based techniques to spatial-based approaches. Th e editors and authors 

sincerely hope that this volume will introduce the possibilities of spatially-based image 

analysis methods to the attention of a wide range of researchers and image users, that it will 

inspire them to apply these methods in their work and will stimulate them to develop new 

algorithms and applications in this fi eld.

Peter A. Burrough

Utrecht University

Th e Netherlands
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Chapter 1

Basics of Remote Sensing

Steven M. de Jong, Freek D. van der Meer & Jan G.P.W. Clevers

1.1 Introduction

In July 1972 the fi rst earth observation satellite was launched by the United States. In 1972 

this satellite was called Earth Resources Technology Satellite-1 (ERTS-1), a name that held 

until January 1975 when it was renamed into Landsat-1. Th is fi rst earth observation satellite 

held a four waveband multi-spectral scanning system (MSS) aboard in two visible and two 

near-infrared spectral bands and three return beam vidicon (RBV) television cameras. Th is 

sensor wrote history as it proved to be of great importance to give remote sensing worldwide 

recognition as an important environmental technique (Harper, 1983).

Remote sensing refers to obtaining information about objects or areas by using 

electromagnetic radiation (light) without being in direct contact with the object or area. 

So, remote sensing is day-to-day business for people. Reading the newspaper, watching cars 

driving in front of you, looking at a lecturer during classes are all remote sensing activities 

of the  human eye. Th e human eyes register the solar light refl ected by these objects and your 

brains interpret the colours, the grey tones and intensity variations. Next, these data are 

translated into useful information. Th e human eye however is limited to a small part of the 

total  electromagnetic spectrum i.e. approximately 400 to 700 nm. In remote sensing various 

kinds of tools and devices are used to make electromagnetic radiation outside this range 

visible to the human eye, especially the near infrared, middle infrared, thermal infrared and 

microwaves. Remote sensing now plays an important role in a wide range of environmental 

disciplines such as geography, geology, zoology, agriculture, forestry, botany, meteorology, 

oceanography and civil engineering.

Since that fi rst launch of an earth observation satellite remote sensing is increasingly used 

to acquire information about environmental processes such as agricultural crops, land cover, 

vegetation dynamics, water quality, urban growth, seabed topography etc. Remote sensing 

helped us to increase our understanding of the ecological system of the earth. Remote sensing 

helped us to measure the size of the ozone hole in the atmosphere, to notice the diff erences 

of atmospheric ozone concentrations between the southern and northern hemisphere and 

to understand the dynamics of ozone concentration in the atmosphere. Remote sensing is 

playing a key role in our eff orts to understand the complex dynamics of ocean circulation 

such as El Niño, El Niña and the NAO: the Northern Atlantic Oscillation and to assess 

their eff ects on global and regional climates and extreme events. Long-term remote sensing 

observations of the Sahel region made us at least partly understand the complex cyclic pattern 
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of the advancing and withdrawing Sahara desert. Th e European Union is successfully using 

Earth observation images collected throughout the growing season of crops to control their 

subsidies on agricultural crops. Remote sensing is used in precision agriculture practices to 

follow crop development and to detect water or nutrient defi cits. Remote sensing is used to 

collect information necessary for the maintenance of forests and to monitor nature reserves. 

Next, there is of course the role of remote sensing in our society as an instrument enabling us 

to monitor the activities of neighbouring, and maybe hostile states as shown during the fi rst 

and the second gulf wares in the middle east.

1.2 Historic overview

In 1859 Gaspard Tournachon took an oblique photograph of a small village near Paris from a 

balloon. With this picture the era of earth observation and remote sensing had started. Other 

people all over the world soon followed his example. During the Civil War in the United 

States aerial photography from balloons played an important role to reveal the defence 

positions in Virginia (Colwell, 1983). Likewise other scientifi c and technical developments 

this Civil War time in the United States speeded up the development of photography, 

lenses and applied airborne use of this technology. Although the space era of remote sensing 

was still far away after the Civil war, already in 1891 patents were granted in Germany 

to successful designs of rockets with imaging systems under the title: ‘new or improved 

apparatus for obtaining bird’s eye photographic views of the earth’. Th e design comprised a 

rocket propelled camera system that was recovered by a parachute. Table 1.1, modifi ed from 

Campbell, 1996) shows a few important dates in the development of remote sensing.

Th e next period of fast developments in earth observation took place in Europe and not in 

the United States. It was during World War I that airplanes were used on a large scale for 

photoreconnaissance. Aircrafts proved to be more reliable and more stable platforms for earth 

observations than balloons. In the period between World War I and World War II a start was 

made with the civilian use of aerial photos. Application fi elds of airborne photos included at 

that time geology, forestry, agriculture and cartography. Th ese developments lead to improved 

cameras, fi lms and interpretation equipment. Th e most important developments of aerial 

photography and photo interpretation took place during World War II. During this time 

span the development of other imaging systems such as near-infrared photography, thermal 

sensing and radar took place. Near-infrared photography and thermal infrared proved very 

valuable to separate real vegetation from camoufl age. Th e fi rst successful airborne imaging 

radar was not used for civilian purposes but proved valuable for nighttime bombing. As such 

the system was called by the military: ‘plan position indicator’ and was developed in Great 

Britain in 1941.

After the wars in the 1950s remote sensing systems continued to evolve from the systems 

developed for war eff orts (Lillesand & Kiefer, 2000; Colwell, 1983; Harper, 1983).  Colour 

infrared photography (CIR) was found to be of great use for the plant sciences. In 1956 

Colwell conducted experiments on the use of CIR for the classifi cation and recognition of 

vegetation types and the detection of diseased and damaged or stressed vegetation. It was 

also in the 1950s that signifi cant progress in radar technology was achieved. Two types of 
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radar were developed at that time: SLAR: side-looking airborne radar and SAR: Synthetic 

Aperture Radar. Either development aimed at the acquisition of images at the highest 

possible resolution. Crucial to the SAR development was the ability to fi nely resolve the 

Doppler frequencies using a frequency analyses algorithm on the returning radar signal by 

the US Air Force research centre.

In the early 1960s the US started placing remote sensors in space for weather observation 

and later for land observations. TIROS (Television Infrared Observation Satellite) was the 

fi rst meteorological satellite. A long series of meteorological satellites followed this one. 

1960 was also the beginning of a famous US military space imaging reconnaissance program 

called Corona (McDonald, 1995). Unfortunately, much of this programme remained classifi ed 

until 1995. In 1970 the TIROS programme was renamed into NOAA (National Oceanic and 

Atmospheric Administration). Until today the NOAA Advanced Very High Resolution 

Radiometer (AVHRR) is orbiting the globe and collecting information on weather patterns 

in visible, near infrared and thermal wavelengths. NOAA-17 was launched on June 24, 2002. 

Th e 1950s and 1960s were also important for the organisational development of remote 

sensing. Various civil research organisations and universities became highly interested in 

these new technologies. Th is resulted in the start of various professional organisations and 

the publishing of remote sensing journals such as the IEEE Transactions on Geoscience and 

Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment 

and Photogrammetric Engineering & Remote Sensing. Today remote sensing is not only 

taught at the university level but also at high schools.

In the early 70s the fi rst satellite specifi cally designed to collect data of the earth’s surface 

and its resources was developed and launched: ERTS-1 Earth Resources Technology 

Satellite. Later, in 1975, this programme was renamed into Landsat. Th is fi rst earth resources 

satellite was in fact a modifi ed Nimbus weather satellite carrying two types of sensors: a four 

waveband multi-spectral scanner (MSS) and three return beam vidicon television cameras 

(RBV). Th e sensors aboard this satellite proved to be able to collect high quality images at 

a reasonable spatial resolution. Th ese images gave remote sensing a worldwide recognition 

as a valuable technology. Th e main advantages recognized at that time were (Curran, 1985): 

ready availability of images for most of the world, lack of political, security and copyright 

restrictions, low cost, repetitive multi-spectral coverage and minimal image distortion.

Landsat 2 and 3 were launched in 1975 and 1978, respectively, and carried the same payload 

as the fi rst satellite of this series. Th e payload was changed in 1982 with Landsat 4. Th e 

technically more advanced Th ematic Mapper (TM) sensor replaced the RBV. An improved 

design of the TM, the ETM+ ( Enhanced Th ematic Mapper) was mounted aboard Landsat 

7 and launched in 1999. Th e Landsat series is a very successful programme, various MSS and 

TM sensors exceeded by far its design life time and its imagery is probably the most widely 

used data in the Earth sciences. One black spot on its history record is the ‘failure upon 

launch’ of Landsat 6 in 1993.

Various other successful earth observation missions carried out by other countries followed 

the Landsat programme. In 1978 the French government decided to develop their own earth 

observation programme. Th is programme resulted in the launch of the fi rst SPOT satellite 

in 1986. To the original SPOT design of three spectral bands a new sensor called Vegetation 
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was added aboard SPOT-4 in 1998. Other earth observation missions are the Indian Remote 

Sensing Programme (IRS) started in 1988, the Russian Resurs series fi rst launched in 1985 

and the Japanese ADEOS (Advanced Earth Observing Satellite) put in orbit in 1996. Th e 

European Space Agency (ESA) launched its fi rst remote sensing satellite, ERS-1, in the year 

1991. ERS carries various types of sensors aboard among which the AMI, a C-band (5 cm 

radar) active microwave instrument. Th e main focus of the ERS programme is oceanographic 

applications although it is also widely used for monitoring tropical forests. In 1995 ERS-2 

was successfully launched. In March 2002 ESA launched Envisat-1, an earth observation 

satellite with an impressive payload of 13 instruments such as a synthetic aperture radar 

(ASAR) and a Medium Resolution Imaging Spectrometer (MERIS). An important recent 

development is the launch of high-resolution earth observation systems such as IKONOS 

and QuickBird. Th ese systems have multi-spectral systems collecting information in 4 bands 

(blue, green, red and near-infrared) at a spatial resolution of 4 meters or better.  IKONOS has 

also a panchromatic mode (0.45-0.90 m) with a spatial resolution of 1 m. With IKONOS, 

QuickBird and similar systems, space borne remote sensing approaches the quality of 

airborne photography.

Table 1.1 –   Milestones in the history of remote sensing (modifi ed from Campbell, 1996).

1800 Discovery of Infrared by Sir W. Herschel
1839 Beginning of Practice of Photography
1847 Infrared Spectrum Shown by J.B.L. Foucault
1859 Photography from balloons
1873 Theory of Electromagnetic Spectrum by J.C. Maxwell
1909 Photography from Airplanes
1916 World War I: Aerial Reconnaissance
1935 Development of Radar in Germany
1940 WW II: Applications of Non-Visible Part of EMS
1950- Military Research and Development
1959 First Space Photograph of the Earth (Explorer-6)
1960 First TIROS Meteorological Satellite Launched
1970 Skylab Remote Sensing Observations from Space
1971 Launch of Landsat-1 (ERTS-1): MSS sensor
1972- Rapid Advances in digital image processing
1978 Launch of Seasat (fi rst spaceborne L-band radar)
1982 Launch of Landsat-4: new Generation of Landsat sensors TM
1986 French Commercial Earth Observation Satelliet SPOT
1986 Development Hyperspectral Sensors
1990- Development High Resolution Spaceborne Systems

First Commercial Developments in Remote Sensing
1991 Launch of the fi rst European Remote Sensing Satellite ERS1 (active radar)
1998 Towards Cheap One-Goal Satellite Missions
1999 Launch of EOS-TERRA: NASA Earth Observing Mission
1999 Launch of IKONOS, very high spatial resolution sensor system
2001 Launch of Landsat-7 with new ETM+ sensor
2001 Launch of QuickBird, very high spatial resolution sensor system
2002 Launch of ESA’s Envisat with 10 advanced instruments
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1.3 Concepts of Remote Sensing

Remote sensing, also called earth observation, refers in a general sense to the instrumentation, 

techniques and methods used to observe, or sense, the surface of the earth, usually by the 

formation of an image in a position, stationary or mobile, at a certain distance remote from 

that surface (after Buiten & Clevers, 1993). In remote sensing electromagnetic radiation 

coming from an object, in case of earth observation this object is the earth’s surface, is being 

measured and translated into information about the object or into processes related to the 

object. In the former measurement phase the following components are relevant:

•   the source of the electromagnetic radiance

•   the path through the atmosphere

•   the interaction with the object

•   the recording of the radiation by a sensor.

Th ese comprise the remote sensing system as illustrated in fi gure 1.1. Th e second phase can be 

considered to cover the following components:

•   transmission, reception and (pre)processing of the recorded radiance

•   interpretation and analysis of the remote sensing data

•   creation of the fi nal product.

Th e individual components will be briefl y described in the next sections.

.. Sources of electromagnetic radiation

In remote sensing we restrict ourselves to the use of electromagnetic radiation as a 

characteristic of numerous physical processes. All materials with a temperature above 0K 

have the power to emit electromagnetic energy. Objects on or near the earth’s surface are 

able to refl ect or scatter incident  electromagnetic radiation emitted by a source, which may 

be artifi cial, e.g., fl ash light, laser or microwave radiation, or natural, such as the sun. In 

the visible, near-infrared (NIR) and middle-infrared (MIR) part of the electromagnetic 

spectrum, we are measuring solar radiation refl ected by objects at the earth’s surface. In the 

thermal-infrared (TIR) part, particularly in the atmospheric window at about 10 m (see 

fi gure 1.2), we are measuring emitted radiation by objects at the earth’s surface, be it that this 

radiation is originating from the sun. In the microwave part of the spectrum, both refl ection 

of solar light and emission occur at very low energy rates. As a result, radiation mostly is 

transmitted to the earth’s surface by an antenna on board the remote sensing system and, 

subsequently, we measure the amount of radiation that is refl ected (backscattered) towards 

the same antenna. Th e latter type of system is generally referred to as an active remote 

sensing system.

.. Th e atmosphere

Before solar radiation reaches the earth’s surface, the  atmosphere will infl uence it. In addition, 

the atmosphere will infl uence refl ected solar radiation or emitted radiation by an object at 

the earth’s surface before an airborne or space borne sensor detects it (Van der Meer & De 

Jong, 2001). Th e atmosphere consists mainly of molecular nitrogen and oxygen (clean dry 

air). In addition, it contains water vapour and particles (aerosols) such as dust, soot, water 

droplets and ice crystals. Th e changes of the radiation can vary with wavelength, condition 

of the atmosphere and the solar zenith angle (Slater, 1980). Th e most important processes 

here are  scattering (Herman et al., 1993) and  absorption (LaRocca, 1993). Scattering eff ects 
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can be divided into Rayleigh, Mie and non-selective scattering. Th ese processes lead to 

the formation of diff use radiation. A portion of the diff use radiation goes back to space 

and a portion reaches the ground. Th e radiation, which has not been scattered, is called 

direct radiation. Absorption is caused, for example, by the presence of water vapour in 

the atmosphere. Scattering and absorption in the atmosphere cause an attenuation of the 

solar radiation before it reaches the earth’s surface. Th is is illustrated in fi gure 1.2 for the 

entire electromagnetic spectrum used for Earth observation techniques. In parts of the 

electromagnetic spectrum the atmosphere is not or hardly transparent, these parts are not 

suitable for remote sensing. Th ose parts of the spectrum where the  atmospheric transmittance 

is high are useful for remote sensing and they are called atmospheric windows. Figure 1.3 

illustrates the eff ects of scattering and absorption in the optical part of the spectrum between 

400 and 2500 nm as computed by the atmospheric transmission model Modtran (Wolfe and 

Zissis, 1993). Most of the absorptions are due to water in fi gure 1.3. Absorption due to oxygen 

occurs at 760 nm, carbon dioxide at 2005 and 2055 nm.

.. Object – radiation interaction

When electromagnetic radiation hits an object at the earth’s surface, it can be transmitted, 

absorbed or refl ected. Th e mutual magnitude of these processes is determined by the 

properties of the object. In remote sensing we can measure the amount of refl ected solar 

radiation as a function of wavelength, called spectral refl ectance. Figure 1.4 illustrates the 

spectral refl ectance of some typical objects. Water absorbs most of the incoming radiation 

and refl ects only a small amount of radiation particularly in the visible part of the spectrum, 

at longer wavelengths water does not refl ect any signifi cant amount of radiation. Soils exhibit 

quite a smooth spectral refl ectance curve. Distinct spectral features are found in narrow 

spectral bands caused by absorption by minerals and iron oxide and can be detect by  imaging 

spectrometers (Van der Meer and De Jong, 2001). Broader features occur at about 1400 nm 
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Figure 1.1 – Th e remote sensing system (modifi ed from Curran, 1985).
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and at about 1900 nm, due to absorption by water. Th e absorption by water also causes the 

gradually decreasing refl ectance with increasing wavelength in the mid-infrared region. Th e 

moisture content of the soil causes the spectral refl ectance of a wet soil to be lower than that 

of a dry soil. Vegetation, on the other hand, shows a very characteristic refl ectance curve. Th e 

refl ectance in the visible part of the spectrum is low due to absorption of this radiation by 

the chlorophyll in the green plant parts. In the NIR region hardly any absorption occurs, and 

refl ectance is determined by the amount of transitions between cell walls and air vacuoles 

in the leaf tissue. As a result, NIR refl ectance of green vegetation is high, and a steep slope 

occurs in the curve at about 700 nm, the so-called red-edge region (Clevers and Jongschaap, 

2001; Kumar et al., 2001). In the MIR region we observe a similar infl uence of water as 

observed for soils.
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Figure 1.2 – Atmospheric transmittance for radiation as a function of the wavelength (modifi ed 

from Lillesand and Kiefer, 2000).
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In the thermal infrared part of the spectrum the amount of emitted radiation is measured. 

Th is amount can be related to the temperature of the feature observed. Th is provides 

information on, e.g., the (evapo)transpiration of the surface and thus gives relevant 

information for energy balance studies. An important property of the long wavelengths 

used in the microwave region is that they are not susceptible to atmospheric scattering. As a 

result they can penetrate through cloud cover, haze and all but the heaviest rainfall. A passive 

microwave sensor detects the naturally emitted microwave energy within its fi eld of view. Th is 

emitted energy is related to the temperature and moisture properties of the emitting object. 

Since the amounts of emitted energy generally are very small, a passive microwave sensor is 

therefore characterised by a low spatial resolution.

Active microwave sensors provide their own source of illumination. Th ey are called radars 

and measure the amount of energy scattered back towards the radar antenna. Th e radar 

echo is depending on the properties of the radar system like frequency, polarisation and 

the viewing geometry, and on the properties of the object like the roughness and electrical 

properties. So, with radar we get information on object properties like the geometry (terrain 

topography), roughness (height variations in relation to the applied wavelength) and moisture 

(determining the electrical properties of a soil or vegetation). An in-depth description of 

microwave remote sensing is given in volume 3 of this book series on ‘Remote Sensing and 

Digital Image Processing’ by Kozlov et al. (2001) or can be found in Henderson and Lewis 

(1998).
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.. Sensors

Instruments capable of measuring electromagnetic radiation are called sensors. Th ey can be 

classifi ed as follows:

1.   Passive sensors do not have their own source of radiation. Th ey are sensitive only to 

radiation from a natural origin, usually refl ected sunlight or the energy emitted by an 

earthly object. Th e classical example of a passive imaging sensor is the camera, which 

records the distribution of radiation from an object on a photosensitive emulsion spread 

out on a fi lm. Other examples are the multi-spectral scanner, the thermal scanner and the 

microwave radiometer. Both sensor and object are passive.

2.  Active sensors have a built-in source of radiation. Th e object is passive. Examples are radar 

(radio detection and ranging) and lidar (light detection and ranging).

Radiation can be recorded in an analogue form, the aerial photograph is a particular example, 

or radiation can be stored in a digital arrangement, a set of signal values on a magnetic device 

CD-rom or DVD, as in most remote sensing records at present. Visualized images (pictures) 

may be derived from digital data of imaging sensors. Before proceeding it is advisable to 

indicate which properties permit the observation and recognition of an object. 5 Main classes 

can summarize the many object characteristics:

1   Shape and size of the object; the spatial or geometric resolution is important for the 

sensor. In general, the size of the pixels (in terrain dimensions) is used as a measure.

2  Refl ective and/or emissive properties of the object, the dynamic range and the radiometric 

resolution are important for the sensor. Th is  dynamic range is defi ned as the number of 

digital levels in which the observed refl ection or emission can be stored.

3   Spectral properties (wavelength, frequency, colour) of the object, the wavelength or 

frequency bands and the spectral resolution (i.e. the band width) are important for the 

sensor.

4  Th e eff ects of polarization of the object; the selection of  polarization is important for 

the sensor, viz. (HH) horizontally polarized transmission and reception; (VV) vertical 

polarization and (HV) or (VH) cross polarization. Th is applies particularly to the 

microwave region.

5   Temporal eff ects (changes in time or location) of the object; the temporal resolution 

concerning a possible time interval between successive remote sensing surveys of the same 

region is important for remote sensing.

It is clear that the design and use of remote sensing systems should be preceded by many 

considerations depending on specifi c applications.

.. Transmission, reception and (pre-)processing

Th e energy recorded by the sensor has to be transmitted, in electronic form, to a receiving 

and processing station where the data are processed into an image (digital and/or hardcopy). 

Generally, the provider of the image data will already apply some pre-processing. Pre-

processing operations are intended to correct for sensor- and platform-specifi c radiometric 

and geometric distortions of data.  Radiometric corrections may be necessary due to variations 

in scene illumination and viewing geometry, atmospheric conditions, and sensor noise 

and response. Each of these will vary depending on the specifi c sensor and platform used 

to acquire the data and the conditions during data acquisition. Also, it may be desirable 
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to convert and/or calibrate the data to known (absolute) radiation or refl ectance units to 

facilitate comparison between data.

.. Image analysis and interpretation

Th e outstanding advantage of digital recordings is that numerous manipulations can be 

applied to the observational data according to the methods of digital image processing and 

pattern recognition. A very extended set of algorithms can be applied in an automatic way 

by using one of the various software packages for image analysis that are on the market. In 

principle, three categories of information can be derived from remote sensing:

1   Th e assignment of class labels to the individual pixels or objects in an image, called 

classifi cation creating, e.g., a thematic land cover map;

2  Th e estimation of object properties from remote sensing e.g. assessing the amount of 

biomass of agricultural crops or forest types;

3   Th e monitoring of the thematic class labels named under 1) or the object properties named 

under 2) over time.

Observing, for example, the properties of vegetation, one has to pay attention to numerous 

variables. Examples of these are the irradiance, the direction of the radiation source, the 

condition of the atmosphere and its infl uence on the detected radiation, the presence of 

surrounding objects, the viewing angle of the sensor and, last but not least, the variations 

pertinent to the vegetation such as growing stage, moisture content, leaf area index, number 

of leaf layers and soil background. In summary, information about the earth’s surface and its 

features may be obtained from images by detection on the basis of:

•   Spectral characteristics (wavelength or frequency, refl ective or emissive properties);

•   Spatial characteristics (viewing angle of the sensor, shape and size of the object, position, 

Site, distribution, texture);

•   Temporal characteristics (changes in time and position);

•   Polarization characteristics (object eff ects in relation to the polarization conditions of the 

transmitter and receiver).

Th ese information-extraction algorithms can generally only be applied to earth observation 

images when the images are radiometrically processed i.e. converted from raw digital 

numbers into physical units such as radiance or refl ectance. Such correction should account 

for sensor characteristics, terrain topography and atmospheric conditions. Details about 

radiometric processing can be found in Van der Meer et al. (2001). Furthermore, images 

must be geometrically corrected for the eff ects of scanner distortions of the image, orbital 

geometry and fi gure of the earth. Details on methods for geocoding and distortion correction 

are given in Schowengerdt (1997).

.. Th e fi nal product

Th e output from remote sensing can be in various forms and often is information that is 

used as input for further analysis, e.g. in a geographical information system (GIS). On the 

one hand, information present in a GIS can help in the analysis and interpretation of remote 

sensing data. On the other hand, the results of a remote sensing analysis can be stored in a 

GIS. Subsequently, this information can be combined with other types of information for 

various types of studies or applications. As an example, a land cover map can be considered 

as an ‘end product’ of a remote sensing analysis. It can be used as input in a study towards 

groundwater pollution by combining it with various spatial and statistical data.
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1.4 The chapters in this book

Conventionally used spectral classifi cation methods of remote sensing images work on 

a pixel-by-pixel basis and ignore the useful spatial information surrounding the pixel. In 

this book we bring together a range of new and advanced image analysis methods aiming 

at quantitatively capturing that spatial information in earth observation images and use it 

eff ectively for applications such as land cover mapping, natural vegetation survey, soil mineral 

mapping, hydrocarbon seepage mapping and urban issues. In chapter 1 the basic concepts of 

remote sensing and the historic developments are briefl y presented. Th e quintessence of the 

other chapters is briefl y presented below. We are aware that there is some kind of overlap 

between a number of chapters, especially with respect to the basics of geostatistics and the 

basics of earth observation. We believe that this small degree of overlap is not harmful to the 

contents of the book but will allow the reader to consult the chapters individually.

Chapter 2 starts by presenting and discussing traditional approaches in geography, ecology, 

hydrology, geology and other disciplines of handling spatial variability in their mapping and 

surveying eff orts of complex natural landscapes. Basic forms of earth observation such as 

black and white aerial photographs have played an important role in these mapping eff orts 

since they were available. Next, we look at how sensors register refl ected radiance from 

the earth surface and how the pixels, regularized or gridded sampling of the landscape, are 

imperfect capturings of the natural patterns that occur in the surrounding landscape. We 

then review a number of statistical and geostatistical models and how they can help us to 

quantitatively characterize spatial structures.

In chapter 3 Foody put emphasis on the fact that pure pixels in remote sensing images do 

not exist and hence, a pixel will never represent a single thematic class complicating the 

production of accurate land cover maps. Recognizing the fact that each remote sensing image 

has a certain degree of mixed pixels, methods are required to analyse images at the  sub-pixel 

level. Foody reviews two methods to estimate sub-pixel composition, the linear mixture 

model and the soft or sub-pixel classifi cation method. Next he identifi es a number of current 

and future research topics such as the extraction of sub-pixel scale thematic information 

using support vector machines.

In chapter 4 Atkinson presents an overview of the meaning of terms such as spatial 

resolution, pixel size, up- and downscaling. Next the issue of  scale,  support and pixel size, 

spatial resolution and spatial extent is considered followed by an outline of geostatistics. 

Variograms,  variogram models and kriging are summarized. Furthermore, Atkinson 

discusses a number of methods for downscaling i.e. increasing the spatial resolution of an 

already acquired data set and hence providing a representation of the data set at fi ner spatial 

resolution (super-resolution). Various methods for  super-resolution mapping are presented 

such as sub-pixel classifi cation, the Hopfi eld  neural network approach and a pixel swapping 

method. Th e concepts and ideas presented in this chapter form a good basis for the later 

chapters in the book dealing with related techniques, methods and practical applications.

In chapter 5 Hay and Marceau presents a new and advanced multiscale approach for 

landscape analysis MOSA.  MOSA stands for  Multiscale Object-Specifi c Analysis. Hay and 
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Marceau claim that it is now widely recognized that landscapes are complex systems that are 

characterized by a large number of heterogeneous spatial components, non-linear interactions, 

emergence, self-organization, adaptation through time, and scale multiplicity. Th e later 

property refers to the fact that landscapes exhibit distinctive spatial patterns associated to 

diff erent processes at diff erent scales. Since there is no way of defi ning a priori what are 

the appropriate scales associated to specifi c patterns, and because there is a need to derive 

adequate rules for transferring information through multiple scales, it is imperative to develop 

a multiscale approach that allows dominant patterns to emerge at their characteristic scales of 

expression. In this chapter Multiscale Object-Specifi c Analysis (MOSA) is described as a 

multiscale approach for landscape analysis that has been developed for the particular spatial 

sampling context of remote sensing data where each pixel is considered as part of an image-

object. Th is approach reduces the eff ect of the modifi able area unit problem ( MAUP) and 

explicitly takes into account the hierarchical organization of the landscape. MOSA represents 

an integration of Object-Specifi c Analysis (OSA), Object-Specifi c Up scaling (OSU) and 

Marker-Controlled Segmentation (MCS) that allows for the generation of data at a range 

of scales from which objects can be detected, and for the delineation of individual objects as 

they emerge and evolve through scale. In chapter 5, a detailed description of MOSA is given, 

provide new information on the OSA kernel, and discuss improved methods for using MCS 

as a feature detector. Th is is followed by an application using an IKONOS-2 (Geo) dataset 

acquired over a highly fragmented agro-forested landscape in southwest Quebec, Canada.

In chapter 6 Chica-Olmo and Abarca-Hernández present texture-based and variogram-

based methods to analyse and express quantitatively the spatial properties of remotely sensed 

imagery.  Texture is a feature that has received great attention in image processing particularly 

in remote sensing applications. Valuable information can be extracted from textural analysis, 

about the spatial arrangement of the objects, thematic classes, in the image and their 

relationship with the environment. From a geostatistical point of view, diverse procedures 

can be developed for textural analysis of images. All of them use the variogram function as 

a powerful tool to analyse the spatial variability of digital values. Th is vector function locally 

represents the spatial variance of the data within a window and, consequently, can serve as 

an operator to create texture images calculated at a local level. Th e  variogram off ers wide 

possibilities to calculate textural operators or measures, on the basis of the diff erent uni- or 

cross variant variogram estimators. In such cases, the measures are calculated for specifi c lag 

distances in a local neighbourhood, obtaining as the fi nal result a set of geostatistical texture 

images. A second case analysed is the joint use of the variogram function with the well-

known geostatistical estimation method of  kriging through cross validation. Th e validation 

or experimental errors obtained in moving windows off er another interesting way to derive 

textural images. In an applied context, this textural information concerning the geostatistical 

analysis of the image, added to the spectral bands, plays an important role as contextual 

information for classifying remotely sensed images, in order to increase digital classifi cation 

accuracy. A geological example to map important classes for mineral prospecting in South-

east Spain is given.

In chapter 7 Berberoglu and Curran present the use of traditional land cover classifi ers such 

as the maximum likelihood approach and the use of artifi cial neural networks to classify 

remotely sensed images. Next they provide a thorough overview of methods how to assess 
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texture from images by fi rst and second order statistics, by geostatistics i.e. various types of 

variograms and by  fractals and they discuss the pros and cons of a pixel-based classifi cation 

versus a per-fi eld approach. Th e previously discussed methods are applied to an IKONOS 

image of a study area located on the Cukurova plain in Turkey. Th is case study illustrates 

a method how to integrate spectral and spatial information captured by an image in two 

diff erent classifi cation methods: the widely used maximum likelihood approach and artifi cial 

neural networks. Th e increase of classifi cation accuracy is presented and discussed together 

with the pros and cons of the various texture measures.

In chapter 8 Gong and Xu review the use of contextual information for urban areas and they 

stress the importance of  contextual approaches to characterize spatial structural diff erences 

in high spatial resolution images of urban regions. Contextual spatial approaches are not 

only useful for panchromatic images but can also successfully be applied to multi-spectral 

data. Gong and Xu introduce the  frequency-based contextual classifi er (FBC). FBC creates 

frequency tables of pixel values in neighbouring cells within a kernel and assigns these values 

to the centre pixel. An important advantage is that frequency tables contain more spatial 

information than fi rst-order statistical measures such as mean and standard deviation. 

Th e choice of the window size is crucial for the successful application of FBC. Example 

applications to a multi-spectral SPOT image, a CASI image and samples of an IKONOS 

image are presented and discussed.

In chapter 9 Van der Meer presents a geological application of a contextual image analysis 

method on hyperspectral HyMap imagery of the Cuprite dataset in Nevada by producing 

images of spectral absorption band parameters. Van der Meer describes that spectral 

refl ectance in the visible and near infrared off ers a rapid and inexpensive technique for 

determining the mineralogy of samples and obtaining information on chemical composition. 

Absorption-band parameters such as the position, depth, width, and asymmetry of the 

feature have been used to quantitatively estimate composition of samples from hyperspectral 

fi eld and laboratory refl ectance data. Th e parameters have also been used to develop mapping 

methods for the analysis of hyperspectral image data. Th is has resulted in techniques 

providing surface mineralogical information (e.g., classifi cation) using  absorption-band 

depth and position. However no attempt has been made to prepare images of the absorption-

band parameters. A simple linear interpolation technique is proposed in order to derive 

absorption-band position, depth and asymmetry from hyperspectral image data.  AVIRIS 

data acquired in 1995 over the Cuprite mining area (Nevada, US) are used to demonstrate the 

technique and to interpret the data in terms of the known alteration phases characterizing 

the area. Next we turn to look at stratifi ed approaches. It is demonstrated that vegetation 

indices, red edge index and carter stress indices are highly correlated with lithology as shown 

in the analysis of Probe (HyMap) data from Santa Barbara (CA). Th is area is renown for oil 

and gas seeps. Th e analysis is a statistical data integration leading to mapping of oil and gas 

seeps from the relation between vegetation anomalies, soil mineralogical anomalies and the 

lithology. Th e last part of the chapter is devoted to contextual analysis. Here we introduce 

data inversion techniques that incorporate geologic prior knowledge. An example is shown 

on Hymap data from a sedimentary sequence. We exploit the systematic facies changes to 

outperform standard mapping approaches.
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In chapter 10 Scholte, Gacía-Haro and Kemper presents a special case of spectral mixture 

analysis of imagery: the variable multiple  endmember spectral mixture analysis for mapping 

heavy metal contamination of soils and for mapping mud volcanism. Spectral mixture 

analysis is a widely used method to determine the sub-pixel abundance of vegetation, soils 

and other spectrally distinct materials that fundamentally contribute to the spectral signal of 

mixed pixels. Spectral unmixing techniques strive at fi nding partial least squares solutions to 

the (linear) mixing of spectral components in order to derive fractional abundance estimates 

of selected endmembers. Th e  Variable Multiple Endmember Spectral Mixture Analysis 

(VMESMA) is an integrated image analysis method that extends the possibilities of multiple 

endmember spectral unmixing allowing variable endmember sets for diff erent parts of an 

image and standardization of the data prior to unmixing. VMESMA is based on a zonal 

partition of the area and a zone-dependent choice of multiple candidate submodels and 

unmixing algorithms, each valid within a scene sub-area. By formalising knowledge of the 

application domain into a simple scene model, the spatial relationships between the pixels 

can be used to meet the user requirements. In this chapter the current state of VMESMA 

is discussed in terms of geologic applications such as the mapping and monitoring of 

residual heavy metal contamination after the Aznalcóllar mining accident in Spain and mud 

volcanism associated with petroleum system properties in oil mud ejecta in Azerbaijan.

In chapter 11 Van der Werff  and Lucieer presents the use of hyperspectral remote sensing 

to detect hydrocarbon seeps at the earth surface. Th ese  seeps or leakage areas of subsurface 

reservoirs manifest themselves by discoloured alterations zones or by harmful eff ects on 

vegetation. Th e spectral diff erences between the spectra of the seepages and the spectra of 

their background and surroundings are very small. As a result the seepage areas are diffi  cult to 

identify. However, the seepage areas generally have specifi c spatial shapes such as a halo shape 

or an oval shape, either around a central vent. Van der Werff  and Lucieer has developed an 

algorithm to detect specifi c halo-shape spatial patterns and to determine whether the spectra 

in these shapes are spectrally anomalous from other image parts. Th e algorithm is tested on 

simulated images produced by using spectra of oil seeps in California. Results are promising 

but future work is necessary to include more spatial shapes and spectra in the algorithm.

In chapter 12 Blaschke, Burnett and Pekkarinen introduce methods to work with image 

segmentation and objects in an image. Especially the new generation of sensors acquiring 

very high spatial resolution images provide new opportunities to identify objects, groups 

of pixels in an image that has a meaning in the real world or to apply image  segmentation 

methods that match ecological mapping units used in the fi eld. In this chapter the various 

types and methods of image segmentation are reviewed and the authors touch upon multi-

scale approaches such as  multi-fractal approach. In the second part of this chapter examples 

are given how image segmentation approaches and object-oriented classifi cation can be used 

in forest stand mapping.

In chapter 13 Carvalho, Acerbi, Fonseca, Clevers and De Jong present the use of  wavelets for 

multi-scale image analysis. Wavelets are tools that allow us to analyze datasets over various 

levels of scale and in diff erent directions by de-composing the images into details at diff erent 

resolutions. In this chapter the concept of the use of wavelets for remote sensing imagery is 

introduced and compared with other types of fi ltering and spatial analysis. Th e decomposed 
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images allow us to study the hierarchy of spatial information captured by a specifi c image 

or to study temporal variations at diff erent levels of scale in time series of images. Next, the 

chapter provides a brief overview of applications of wavelets in remote sensing together with 

a reference overview. In the second part of the chapter various case studies are presented and 

discussed. Th e case studies comprise an example of the use of wavelets for image registration, 

a comparison of methods for  feature extraction from images aiming at the fusion of images 

available at diff erent spatial resolution and an application for  change detection.

In chapter 14 Fuller, Smith and Th omson presents the operational use of  contextual analyses 

of remotely sensed images for the production of land cover maps of the United Kingdom 

at a regular basis. Th is chapter examines the use of contextual procedures in pre-processing, 

classifi cation and post-classifi cation phases to produce national land cover maps from 

remotely sensed images. It looks fi rst at the fairly simple contextual corrections by using 

kernels of variable size applied to the raster format  Land Cover Map of Great Britain 

(LCMGB), made in 1990. It then examines the use of a geographical information system 

(GIS) in producing the Land Cover Map 2000 (LCM2000), an update and upgrade of the 

LCMGB. LCM2000 used image-segmentation and segment-based classifi cation, wherein all 

pixels were classifi ed in context. In addition around 12 of parcels required contextually based 

corrections to increase map accuracy. Finally, about 15 of parcels used external contextual 

data to extend the basic thematic classifi cation to meet wider user needs. Contextual analyses 

were thus essential to the entire LCM2000 production process, controlling map structure, 

improving accuracy and adding thematic detail.

In chapter 15 Sluiter, De Jong, Van der Kwast and Walstra present a re-classifi cation method 

called SPARK:  spatial re-classifi cation kernel. Th e conceptual idea behind  SPARK is that the 

land use types of interest can be characterised by the spatial arrangement and the size of the 

objects in the image. Th ese land cover types may include complex natural areas or irregular 

urban areas. In this chapter emphasis is put on Mediterranean types of shrub vegetation. Th e 

SPARK method starts by using a land cover map produced by any type of spectral classifi er. 

Next spatial-based decision rules are defi ned using known local, spatial patterns of objects 

in heterogeneous and homogeneous land use types. Th ese decision rules are then used to 

refi ne the initial classifi cation. Th e SPARK concept is described in detail and a case study 

from an area in southern France is presented to illustrate the classifi cation improvements 

and the eff ect of various kernel sizes. Th e results from SPARK diff er from one vegetation 

type to another but most signifi cant classifi cation improvements are achieved for the open 

and complex shrub type of vegetation for  kernel sizes of 3 by 3 and 5 by 5. One important 

conclusion is that SPARK successful identifi es vegetation classes that are not distinguished at 

all by conventional classifi ers.

Th e fi gures and graphs in this book were all reproduced in black and white to save costs. Th e 

CD-Rom enclosed in the book provides all the colour plates arranged by chapter.



Chapter 2

Spatial Variability, Mapping Methods, Image 

Analysis and Pixels

Steven M. de Jong, Edzer J. Pebesma & Freek D. van der Meer

2.1 Introduction

Remote sensing observations of the surface of the earth, collected by sensors mounted 

in an aircraft or on a spaceborne platform, provide valuable information that is not easily 

acquired by fi eld surveying methods. While  surveying in the fi eld, it is diffi  cult to obtain an 

overview of the landscape elements and their interrelations. Th e airborne and spaceborne 

images are helpful to locate objects in the terrain and to investigate their locations relative 

to each other. Th e imagery also helps us to study and monitor the continuous change of the 

earth surface resulting due to the seasonal cycle, due to geological and geomorphological 

forces or due to human activities. Th e images provide a synoptic view of the earth and are 

helpful to fi nd answers to questions such as: where are objects of interest located, how are 

these objects arranged in relation to each other and how do these objects change over time. 

Having all these capabilities, remote sensing is a powerful tool for environmental studies. 

A problem is however, that we do not directly measure pertinent information about the 

objects of interest. When acquiring remote sensing images we basically measure refl ected 

or emitted electromagnetic radiance while in fact we are interested in object identifi cation, 

object properties and the spatial arrangement of these objects in the terrain. Before the image 

provide us with useful information, we have to translate the data of refl ected or emitted 

electromagnetic radiance into, for us, useful information about the identity of an object or 

about certain object properties. Traditionally an image analyst carried out the extraction of 

information from imagery by visual interpretation. Th is  visual interpretation is based on 

image properties like colour, pattern, shape, shadow, size, texture and tone of objects (USDA, 

1993). Nowadays, this process of information extraction and translation of radiance into useful 

object identity or object properties is mainly computer-based.

Th is process of translating refl ected or emitted electromagnetic radiation into useful 

information is normally referred to as image processing. Image processing comprises 

a number of preparatory steps i.e. geometric correction and radiometric processing of 

images, image enhancement or image improvement steps such as contrast stretch, image 

transformations and noise reduction. After these so-called pre-processing of the image, 

image analysis is normally continued by a number of information extraction steps. Th ese 

information extraction steps refer to supervised or unsupervised image classifi cation methods, 
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the use of spectral vegetation indices or other types of image ratioing, pattern recognition 

and/or visual interpretation.

Over the years considerable attention has been to paid to visual interpretation of images and 

automated image classifi cation based on the spectral information captured by the pixels. Less 

attention is paid to the spatial patterns captured by images and how that type of information 

can play a role in information extraction from earth observation imagery. Over the last 

decennia a whole series of analysis and modelling techniques became available for the wider 

research community due to the increased power of the desktop computers. Th ese methods 

include texture measures, aggregation methods,  fractals and  multi-fractals,  geostatistics, 

 wavelets and many others. Th e lack of attention in the past for spatial pattern information 

content of airborne and spaceborne images is surprising since many scientifi c disciplines 

concerned with the environment such as geography, geology, botany and forestry are 

traditionally working with spatial patterns of e.g. vegetation types, vegetation communities, 

soil types, soil catenas, geological structures and geomorphological patterns. In fact, surveying 

as practised by many disciplines comprise the recognition of spatial patterns and bringing 

order in complex spatial patterns by creating mapping units. Th e chapters in this book aim 

at bringing together a number of techniques and methods that were specifi cally developed 

and tested to extract and analyse spatial patterns and spatial information captured by remote 

sensing images. In this chapter we aim at presenting and discussing a number of general 

aspects and general techniques used in geography, geology, forestry, botany and other 

disciplines for investigating and quantifying spatial patterns.

2.2 Spatial variability in landscapes

.. Spatial variation

Today’s landscapes are the result of various natural landscape forming processes in the past 

and present and sometimes by human interference. Th e variety of landscapes that we fi nd on 

the earth surface is very high and the complexity of their development over time and space 

is equally high. Th is complex history and these complex interactions between the landscape 

forming processes make it diffi  cult to comprehend the actual forms and the actual processes. 

Sometimes landscapes show abrupt, stepwise changes of e.g. natural vegetation, soil types or 

lithological formations but as often we see gradual changes of natural vegetation going from 

forest, to shrubs to grasslands, or gradual transition zones from soils rich in organic matter 

to soils poor in organic matter going hand in hand with a gradual change of soil colour. 

Awareness of this spatial variation of terrain properties is as old as man himself because this 

variation resulted in a spatial diff erentiation of the quality of the land to grow crops or to fi nd 

resources (Hillel, 1992). Th e earliest farmers in history would select a piece of land showing 

the least constraints for growing their crops. Selection criteria would comprise factors 

such as: a fl at area, suffi  cient soil depth, good water availability, well-coloured soil etc. By 

applying agriculture, man started to transform the land and terrain to his/her own purposes. 

Agricultural activities form a disruption of the natural environment as it replaces the natural 

ecosystem with an artifi cial one, established and maintained by man. Th e moment a farmer 

delineates a tract of land and separates it from the contiguous area by arbitrary boundaries 
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and establishing fi elds, he is changing the pre-existing environmental order. Man-infl uenced 

landscapes normally display more regular patterns than natural landscapes do.

It is also recognized for a long time that the spatial variation of land, terrain and vegetation 

properties plays at diff erent levels of scales i.e. over various spatial dimensions. Landscape 

features vary in size by several orders of magnitude, from continents at one extreme to 

particles of sand or clay at the other. Already in the early sixties Tricart (1965) proposed an 

eight-level scalar hierarchy and Haggett et al. (1965) proposed a subdivision of the earth’s 

total surface area by powers of 10, the so-called ‘Ga scale values’. Table 2.1 illustrates these two 

early landscape scales.

Th is hierarchy and ‘natural scale’ of a landscape is recognized and used by many surveying 

disciplines such as soil survey, vegetation mapping, geological mapping and hydrology. Th is 

awareness of scale, spatial extent and spatial variability has resulted in the development of 

various hierarchical mapping systems (Mitchell, 1991; Townshend, 1981; Dent and Young 

1980). In the hydrology ‘naturally homogeneous areas’ were introduced as a necessary tool 

for hydrological modelling. Th ese ‘naturally homogeneous areas’ in hydrology referred to 

as REA:  Representative Elementary Area or HRU:  Hydrological Response Unit, assume 

non-variability of the data and parameters within its delineation (De Wit, 2001; Blösch 

and Silvaplan, 1995). For modelling purposes not only the environmental variables such 

as hydraulic conductivity, evaporation, surface storage and surface runoff  are presumed 

homogeneous in a REA or HRU but there is also non-heterogeneity of the processes 

assumed within the frontiers of these units. Imeson et al. (1995; 1996) introduced a similar 

concept and approach in land degradation research. Th e mapping units that Imeson 

distinguishes in the fi eld are called ‘ Desertifi cation Response Units’ or DRU. Th e DRU 

concept was introduced aiming at linking hydrological and erosion processes from one 

temporal and spatial resolution to another. Th e size of a DRU typically covers a hill slope 

or a part of a hill slope and the DRU classifi cation is based on spatial patterns of soil and 

vegetation because these patterns are thought to be the result of the movement of water, 

water availability and the redistribution of water in the landscape or the catchments.

When we are collecting information about landscape variables or terrain processes in our 

environment, we have to face the fact that we take only samples restricted to a certain points 

in time and that our sample has a certain, limited size. Either sampling eff ort (time and/or 

space) may have a good match with the temporal and spatial variation of the process involved 

Table 2.1 – Landscape scales as proposed by Tricart (1965) and Haggett et al. (1965).

Order Area (km2) Ga scale  Example

I  107  1.71 Entire continent
II  106  2.71 Large plain or piedmont
III  104  4.71 Florida Peninsula, Lowland Britain
IV  102  6.71 Sicily, Sardinia
V  10  7.71 Forests, Provinces
VI  10-2  9.71 River terrace, alluvial fan
VII  10-6  13.71 Soil polygon, runnel
VIII  10-8  15.71 Pebble



20 – S.M.de Jong, E.J. Pebesma & F.D. van der Meer

or may not. A nice illustration of this problem is given by Fonseca de Seixas (1998) in fi gure 

2.1. Th e left part of fi gure 2.1 shows the temporal distribution of precipitation for a study 

area in Portugal over 100 years. When we measure precipitation, for this case at a time step 

t, we will obtain a fairly accurate view of the temporal distribution of rainfall in this area. 

When our measuring interval is reduced to thirty times the t-interval i.e. ‘30t’, we will miss 

important information about the temporal distribution and variability of the precipitation 

in this area. Th e sampling interval, in this case t or 30t, will have a clear impact on our 

perception about the irregularity of rainfall in this area in Portugal.

A similar example can be given for spatial variation in the terrain and size of sampling (or 

support). Th e two graphs on the right hand side of fi gure 2.1 show, at two diff erent sampling 
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Figure 2.1 – Th e eff ect of data sampling resolution in variability patterns. Left for the temporal 

domain, right for the spatial domain (source: Fonseca de Seixas, 1998).
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intervals, the amount of spatial variation that we will capture at sampling distance d or 

at sampling distance 2d. Th e two graphs illustrates that diff erent sampling size will yield 

signifi cant diff erent patterns for this environmental variable. In conclusion, the spatial 

resolution of our sampling eff ort has an important impact on the accuracy of the collected 

information: when the monitoring resolution becomes coarser, the spatial pattern will change 

or will even get lost. In the same way the pixel size of a remote sensing sensor is an important 

system variable determining success or failure to capture certain patterns of vegetation, rocks 

or land use.

Spatial scales and temporal scales are already for a long time recognized as important issues 

to consider and to understand in surveying and modelling. Forms in some landscapes show 

scale invariance while others do not.  Scale invariance is one of the earliest issues taught to 

Geography and Geology students by pointing out that it is important to include an object 

to a photograph that points out the scale of the photo. Such an object is normally a coin, a 

hammer or a person. Any object will do as long as it illustrates the size of the geomorphologic 

or geological feature on the photo. Mandelbrot described already in the eighties the issue and 

theory behind scale invariance as ‘fractals’ (Mandelbrot, 1982). Mandelbrot has trigged by his 

famous book ‘Th e Fractal Geometry of Nature’ a wide range of studies to quantify spatial 

patterns and to study and understand scale invariance. A fractal is an object whose shape is 

independent of the scale at which it is regarded. Scale invariance is also referred to as ‘self-

similarity’ by other authors (Turcotte, 1992). Fractal dimensions, quantitative measures to 

describe complicated, irregular features of variation and ‘roughness’ of several types of objects, 

are useful tools to typify and diff erentiate landscapes (Klinkenberg and Goodchild, 1989; De 

Jong and Burrough, 1994; Quattrocchi et al., 1997). Fractal dimensions can be derived from 

variograms or from kernel algorithms and use the same theoretical basis as hierarchical 

mapping systems.

.. Hierarchical mapping approaches

Hierarchical mapping systems use terrain information such as geomorphology, geological 

structures, climate patterns and vegetation patterns as a basis for mapping. Depending on 

the spatial scale of the survey geomorphology, geology, climate, relief and vegetation patterns 

are important variables for distinguishing land units and for defi ning mapping units. Usually 

these mapping units are considered internally homogeneous, similar to the REA, the HRU 

and the DRU in hydrology and land degradation. Although this assumption of internal 

homogeneity will in practice never be completely true, these mapping unit approaches often 

form a useful approximation and conceptualisation of reality. Th e process of using various 

sources of information to divide the landscape or terrain in to mapping units is in literature 

often referred to as regionalisation of the terrain (Townshend, 1981).

Th e  physiographic approach is one of the most widely applied methods for regionalisation 

(Mitchell, 1991; Townshend, 1981). Physiography is the comprehensive study of surface form, 

geology, climate, soils, water and vegetation and their inter-relationship. Th e physiographic 

approach to regionalisation is thus the subdivision and characterization of the Earth’s surface 

in terms of a wide range of properties. Th e relative importance of the selected physiographic 

properties will vary from one survey to another. Th is importance depends on the type of 

area under investigation and on the fi nal objectives and types of use of the fi nal maps. Th e 
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role of vegetation type and vegetation cover in the physiographic approach has been under 

discussion over the years. Vegetation cover is usually an important guide in recognizing land 

units, particularly when the terrain is viewed from the air on aerial photographs or satellite 

imagery. Researchers opposed of using vegetation in the physiographic approach considered 

vegetation rather as an ephemeral than a permanent characteristic of the landscape. 

Furthermore, they considered vegetation as an organic substance of the landscape and as such 

vegetation is an intrinsically diff erent phenomenon in the landscape than the physical terrain 

elements rocks, soil, water bodies and relief. Th e latter landscape elements are non-organic 

and considered to be less dynamic. Other researchers are in favour of using vegetation 

information in their land mapping eff orts. Th ese researchers often have a background in life 

sciences or are frequently using remote sensing imagery for their mapping work. Substantial 

reasons for using vegetation information in surveys are that vegetation is closely integrated 

with the land surface and infl uences its character.

Vegetation is omni-present at the Earth surface except for some permanent snow and ice 

fi elds and for the most extreme desert areas. In humid climates, the vegetation cover is 

generally thick enough to completely obscure the surface of the ground. Mitchell (19991) 

describes three ways in which vegetation is important for the evaluation of landscapes and 

terrains: 1) vegetation serves an index for the recognition of terrain types, 2) vegetation is an 

attribute in their defi nition and 3) vegetation is a natural resource physically attached to the 

terrain elements of interest and infl uenced by these terrain elements.

When landscape elements or terrain properties are studied from the air, vegetation cover is 

usually an important guide in recognizing them. Th is relation is true for undeveloped areas 

with low population density where the ecological vegetation status (climax) refl ects site 

characteristics but is also true for developed areas such as western Europe where there is 

a close relationship between agricultural land use and site properties. Th e most important 

factor in this relationship is most probably the eff ect of ground and terrain confi guration on 

soil moisture conditions. Th erefore, vegetation is a valuable index of terrain in areas where soil 

levels falls below thresholds critical to plant growth. At a second level, other terrain factors 

such as slope, aspect, soil depth and nutrient status are important and determine to a certain 

degree the plant cover in particular localities. From the early days of the development of 

remote sensing, i.e. the aerial photography in the second half of the 19th century, landforms 

have been studied from the air (Verstappen, 1977) and as vegetation is such an important 

spatial component in airborne and spaceborne images, it is good to understand refl ectance 

properties of vegetation and how they are visible in remote sensing scenes.

.. Spectral properties of vegetation

Th e optical properties of vegetation and individual leaves are described in detail by Kumar 

et al. (2001), Ustin et al. (1999) and Lambers et al. (1998). Signifi cant knowledge about 

individual leaf refl ectance is available in the literature, far less is known about the behaviour 

of an entire canopy with respect to refl ectance, light absorbance and  photosynthesis. In 

general the refl ectance of vegetation in the visible wavelengths (0.43-0.66 m) is small and 

refl ection in near infrared (0.7-1.1 m) is large (fi gure 2.2). Th ree features of leaves have an 

important eff ect on the refl ectance properties of leaves: pigmentation, physiological structure 

and water content.
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Pigments, such as  chlorophyll a and b, absorb radiation of the visible wavelengths. Th e 

species-specifi c structure causes discontinuities in the refractive indices within a leaf, 

which determine its near infrared refl ectance. Th e absorption of light and photosynthesis 

is important for the production of oxygen and foodstuff  for men. For the plant this process 
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Figure 2.2 – Spectral signatures of vegetation, soil and parent material measured at high spectral 

resolution of 1.5 nm (upper graph) and at broadband resolution ranging from 60 to 270 nm 

corresponding to the Landsat TM sensor. Th e loss of information of this vegetation spectrum due to 

increasing spectral bandwidth is clearly visible.
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is very important for trapping and transforming energy. Th e maxima of absorption of the 

pigments chlorophyll a are located at 430 nm and 480 nm and for chlorophyll b at 450 

and 650 nm (Lambers et al., 1998; Bidwell, 1974). Th e refl ectance properties of a vegetation 

canopy are aff ected by the spatial distribution of vegetated and non-vegetated areas, types of 

vegetation, leaf area index, leaf angle distribution and vegetation conditions. Some narrow 

absorption bands due to lignin, cellulose etc. are present in near and short-wave infrared 

wavelengths (Ourcival et al., 1999; Wessman et al., 1989; Vane and Goetz, 1988). However, 

the presence of water often masks their absorption features (Lacaze and Joff re, 1994). 

Furthermore, the bandwidth of the TM is too broad to detect these narrow absorption bands 

as shown in fi gure 2.2.

Water content of the leaves, and water in the atmosphere, reduce overall leaf refl ectance 

and causes some narrow absorption features (water absorption bands). Th ree major water 

absorption bands are located near 1.4, 1.9 and 2.7 m, two minor absorption bands occur near 

0.96 and 1.1 m (Irons et al., 1989). Th e presence of water reduces the overall refl ectance in 

mid infrared of a leaf signifi cantly making it more diffi  cult to identify specifi c absorption 

features. Th e combined eff ect of pigments and physiological structure give healthy vegetation 

its typical refl ectance properties. Combinations of the visible and near infrared spectral 

bands enables us to discriminate bare soil surfaces or water bodies from vegetation. Th ese 

arithmetical band combinations can be referred to as ‘spectral vegetation indices’ (Huete 

and Jackson, 1987; Crist and Cicone, 1984) and provide us insight in the spatial patterns 

of vegetation cover or canopy structures. Spectral indices aim at enhancing the spectral 

contribution of green vegetation in images while minimizing contributions from soil 

background, sun angle and atmosphere by combining various spectral bands in visible and 

near infrared wavelengths.

Th ese spectral vegetation indices comprise among others the  Normalized Diff erence 

Vegetation Index or NDVI (Tucker and Sellers, 1986; Hurcom and Harrison, 1998), the  Soil 

Adjusted Vegetation Index or SAVI (Huete, 1988) or the  Tasselled Cap Greenness (Crist and 

Cicone, 1984; De Jong, 1994). Spectral Mixture Analysis or SMA is another sub-pixel method 

to reveal patterns of ecosystems in remotely sensed images (Foody, 2003; Scholte et al., 2003; 

Van der Meer and De Jong, 2001; Brown, 2001; Adams et al., 1993; 1985). Th e basic assumption 

of this  spectral unmixing technique is that the signal recorded by the satellite sensor for each 

pixel is a linear combination of spectral signatures of pure components weighted by their 

abundance in that pixel. Th e components (or endmembers) are those elements that represent 

the spectral variability of the landscape e.g. for Mediterranean landscapes vegetation, soil and 

rock outcrops. Th e unmixing approach aims at unravelling the complex satellite spectrum by 

using the pure endmember spectra, it is useful for surveying as well as for collecting input for 

models and it does not suff er from the limitations of the spectral indices. Th e mathematical 

notation of the unmixing procedure is as follows (Adams et al., 1993; 1985; Van der Meer et 

al., 2001):

Ri =  (Fj · REij) + i  Fj = 1
n=1

n

n=1

n

 (2.1)
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Ri:     Refl ectance value of a pixel in band i;

Fj:     Fraction of endmember j (in terms of percentage of the pixel surface);

REij:  Refl ectance value for band i of endmember j;

i:      Residual error in band i

n:      Number of bands.

When using the unmixing approach for surveying, the equation is applied to spectral 

information contained in all pixels of a satellite image. Th e equation is then inverted 

and solved through a least squares regression, constraining the sum of fractions to one. 

Limitations of this method include: 1) the pixel composition is assumed to be made up by a 

limited number of elements (for mathematical reasons the number of elements cannot exceed 

the number of spectral bands plus one), 2) it is also assumed that the refl ected light only 

interacted with one component on the ground while in practice multiple scattering often 

occurs (Adams et al., 1985).

Patterns of vegetation and patterns in landscapes at various level of scale are important to 

recognize and contribute signifi cantly to our understanding of landscape formation and 

to our understanding of important landscape processes. Earth observation is an important 

tool to reveal these patterns and to study pattern size and pattern dynamics. Patterns are 

defi ned in the dictionary as ‘an orderly sequence consisting of a number of repeated or 

complementary elements’. Patterns reveal a sort of ‘organization’ of variables in the space 

and/or time domain resulting from the system’s structure and functioning. Th e ‘organization’ 

implies that the randomness is removed from the system and that patterns surfaces and can 

be discovered or identifi ed. A wide range of examples of pattern formation in nature is given 

in Ball (1999). Th e reason why these patterns occur and the processes behind the various 

types of processes are still not fully understood. Studies are undertaken to simulate within the 

computer the development of patterns in a wide range of ecosystems (Rietkerk et al., 2002; 

Millington et al., 2001; Van de Koppel et al., 1997), remote sensing observations play or will 

play an important role in the validation of these computer simulation of natural patterns.

In ecology patterns have a specifi c position in the hierarchy. Th e ecological landscape 

approach suggested by Forman (1986) considers a three level data model. In this model 

he uses successively coarser description levels: particles, gradients and mosaics. Particles 

refer to the individual entities and variability is derived from the diff erences between these 

individuals. Gradients have a gradual variation over space with no explicit boundaries e.g. a 

trend. Mosaics are variables aggregated through similar values forming distinct spatial patches 

with distinct, crisp boundaries. Examples of this three level approach are: trees as particles, 

vegetation gradients and forest or shrub communities as mosaic. A more general example is 

houses as particles in the hierarchy, urban concentrations at the gradient level and a suburb or 

city at the third level. Th e bridge to remote sensing observation becomes immediately clear. 

Th e scales at which we monitor these kinds of ecosystems determine the level of detail that 

we will obtain. Earth observation images with a spatial resolution of 1 km (NOAA-AVHRR) 

will provide insight in patterns of cities and suburbs or forests, earth observation images 

with a resolution of 30 meters (Landsat TM) provide information on urban concentrations 

or vegetation patterns within a forest. High-resolution imagery (aerial photos, IKONOS) 
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or fi eld observation provide information about the particles: the individual houses or the 

individual trees.

At this point we arrive at a very fundamental problem of the use of earth observation for 

mapping ecosystems or patterns at the earth surface. Th e traditional earth observation image 

analysis method is a classifi cation of pixels based on the assumption that pixels capturing the 

same land cover class are close to each other in the feature space. Th e underlying assumption 

of this approach is that the patterns in an image relate to broad classes of land cover that are 

spectrally relatively separable. Th is assumption is not always valid e.g. in case of open shrub 

vegetation, fragmented landscapes, urban areas or at transition zones from one land cover 

type to another. Th e pixel is often larger than we would like it to be with respect to pattern 

variability in the landscape (Fisher 1997). Th e new modern remote sensing systems with 

pixel sizes of 1 meter have not really solved this problem because patterns occur at a variety 

of spatial scales and even often show a kind of scale invariance. Th e high-resolution images 

provide us only insight in an additional level of scale of the landscape pattern. In conclusion, 

image analysis methods are required that capture the spectral information in the image where 

appropriate, that capture spatial information from neighbouring pixels where appropriate and 

that uses either type of information, spatial and spectral, where appropriate. In later sections 

of this chapter we will discuss the spatial and spectral classifi er that aims at implementing 

this approach. Figure 2.3 illustrates this problem. Th e fi gures show four diff erent landscapes. 

Th ree complex Mediterranean areas in France and Spain:

a  an open shrub area referred to as Garrigue with open and closed vegetation patterns,

b  gullies and badlands with linear drainage patterns,

c   an open grassland vegetation, referred to as Landes, and patterns are dominated by the 

underlying geology and

d  a regular agricultural area in the polders in the Netherlands with well-defi ned fi eld 

boundaries and mono-cultures within the parcels. Each landscape requires a diff erent 

image classifi cation approach.

We will now briefl y look in the next section at how images are registered by sensors and the 

eff ect that this may have on image information and patterns. In the later section we present a 

number of statistical models useful for the analysis of remote sensing imagery.

2.3 Registration of spatial information by Remote Sensing sensors

In earlier sections we discussed that remote sensors register refl ected or emitted 

electromagnetic radiance while image users are interested in object identifi cation and 

object properties. Multispectral scanners are the most widely used instruments to register 

refl ected sunlight in the optical domain. Multispectral scanners are mounted on airborne or 

spaceborne platforms. A scanner systematically scans the Earth’s surface thereby measuring 

the electromagnetic energy refl ected from the viewed area. Th ese measurements are done 

simultaneously for several wavelength bands and this is the origin of the name multi-spectral 

scanner. A wavelength band is an interval of the electromagnetic spectrum for which the 

average refl ectance is measured. Two types of multispectral scanners are most widely used 
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and distinguished here: the whiskbroom scanner and the pushbroom scanner ( Janssen & 

Huurneman, 2001).

Th e sweeping motion of a rotating mirror scanning the Earth surface gives the name to the 

whiskbroom scanner. Th e  whiskbroom scanner is a combination of a detector with a rotating 

mirror sweeping as a straight line over the Earth surface across the track of the satellite 

or aircraft. Th e Earth surface is scanned systematically, line by line as the platform moves 

forward. Whiskbroom scanners use solid-state detectors for measuring the electromagnetic 

energy transferred from the optical system to the sensor. Th e optical system focuses the 

incoming radiation at the surface of the detector. Techniques such as prisms or gratings 

are used to split the incoming radiation into spectral components and send that signal to 

separate detectors. Th ese detectors transform the electromagnetic energy, or photons, into 

an electric current. Th is electric current, an analogue signal, is digitised into discrete levels 

of energy: the so-called Digital Numbers (DN). Th e range of the input radiance, between 

the minimum and the maximum level that the detector can handle is called the dynamic 

range. Th is range of incoming radiance is converted into specifi c data formats: 8-bit, 10-bit 

or 12-bit data formats. Th e Landsat Th ematic Mapper used for example an 8-bit format, i.e. 

256 levels of Digital Numbers while IKONOS uses a 12-bit format, 1024 levels of Digital 

Numbers. Each detector in the whiskbroom scanner has a specifi c spectral sensitivity. Th is is 

a b

c d

Figure 2.3 – An example of four diff erent landscapes: a) an open shrub area (garrigue), b) a area 

with gullies and badlands, c) open natural grassland areas (landes) and d) an agricultural area 

with well-defi ned agricultural lots. Traditional pixel-based spectral image classifi cation approaches 

will fail to produce reliable land cover maps for the fi rst three examples but will produce excellent 

result for the agricultural area. Please consult the enclosed CDROM for a full colour version.
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the spectral range in nm, or bandwidth, for which the sensor registers the incoming radiant 

energy. It is normally assumed that this spectral response curve has a normal distribution. Th e 

bandwidth of a sensor is usually determined by the diff erence between the two wavelengths 

where the spectral response curve is at 50 of its maximum and expressed as  Full Width Half 

Max (FWHM) in nanometers.

Th e  pushbroom scanner uses charge-coupled device (CCDs) to measure the electromagnetic 

energy. Lines of light-sensitive detectors (CCD-arrays) records one entire image line at a 

time. Th e main advantage of this type of scanner over the whiskbroom scanner is that each 

pixel in the line has its own detector allowing for a longer measurement time (integration 

time) resulting in an improved geometry and less noise. Furthermore, the pushbroom 

system has no moving parts that generate image noise. Th e pushbroom scanner measures 

continuously along the direction of the satellite or aircraft fl ight line and is therefore also 

referred to as an along-track scanner. Modern video recorders and digital cameras use 

CCD arrays for capturing images, the arrays used for Earth observation purposes are more 

sensitive.

Th e registered electromagnetic energy is stored or expressed in pixels. A pixel is the smallest 

element of an electronic image and can only be subdivided by creating repetitive information 

i.e. a fi ner resolution would mean that all new pixels would fi t within old pixels and have 

the same values assigned (Fisher, 1997). Th e grid cell is a similar kind of object as the 

pixel in geographic information processing (Burrough and McDonell, 1998). Th e grid cell 

representation of space is known as the raster data model. When the grid cells represent the 

spatial variation of continuously varying attributes each grid cell will have a diff erent value of 

the attribute (continuous data such as elevation). Th e grid cell may also represent thematic 
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Figure 2.4 – Principle of the whiskbroom scanner (left) and the pushbroom scanner (right); 

(modifi ed from Janssen L.F.F. & G.C. Huurneman, 2001).
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data. Th e numerical label of the grid cell provides information about e.g. the type of land use 

or soil type present at this location.

Th e  pixel in fact represents an average value in each of three dimensions: space, wavelength 

and time (Schowengerdt, 1997). Th e average value in the pixel over time is usually very 

small, the Landsat TM whiskbroom scanner only requires microseconds to register the 

information and this time step is insignifi cant for most applications. Th e averages over space 

and wavelength are important as they determine how well we can observe our objects and 

how well we can spot spectral diff erences required to identify object properties. So, the pixel 

size and the spectral resolution are important sensor system properties. Pixels are the result 

of the scanning system. Refl ected light is scanned by means of a rapidly rotating scanning 

mirror (whiskbroom scanner) that defl ects the incoming rays of light to form a set of lines 

across a detecting fi eld. Th e varying intensities are stepwise stored, per pixel, per scanline and 

per spectral band. Later this information is used to create an image. While the information 

entering the sensor is registered several important transformations of the radiometric, spatial 

and geometric properties of the radiance occur (Schowengerdt, 1997). Generally, the sensor 

degrades the signal of interest. For proper image interpretation and analysis it is important 

to have some knowledge about the nature of the change of this signal. In summary the signal 

of interest in remote sensing observations is infl uenced by the sensor’s spatial resolution 

(averaging out and/or mixing the refl ected radiance over the pixel size), the sensor’s spectral 

resolution (averaging out absorption bands and/or the overall refl ectance curve), the spectral 

response function of the sensor (the range of refl ectance values that can be captured), the 

imaging process in the optics and detector parts of the sensor and the geometric distortions 

arising from internal sensor or external platform factors. A detailed discussion about the 

eff ects of sensor characteristics on information content of a pixel is available in chapter 4 of 

Atkinson and in Schowengerdt (1997).

2.4 Statistical models for Remote Sensing data

In his book on statistics for spatial data, Cressie (1993) distinguishes three types of spatial 

data: point patterns, lattice data and geostatistical data. Point patterns consist of the spatial 

locations of events that take up very little space and can be considered points: the locations 

of lightning during a thunder storm, the locations of trees in a forest, etc. Lattice data are 

data with a fi nite, regular or irregular spatial index; these can be aggregated for larger, usually 

administrative regions, such as number of births or deaths per local community, or remote 

sensing images with a regular space index. Geostatistical data have a continuous spatial index; 

these are data that have some value at every location, and that could be measured everywhere, 

but that are usually measured on a limited number of locations, chosen during the research.

Statistical methods for regular lattice data, such as remote sensing images, have been applied 

for a long time in remote sensing research. Th ese methods mainly aim at image restoration. 

Th ey include discriminant analysis modifi ed for spatial data (Switzer, 1980), smoothing 

techniques, contextual classifi cation (Barnsley and Barr, 1996), edge detection, image 

partitioning, Min/Max autocorrelation factors or  Maximum Noise Fraction transformations 

(Switzer and Green, 1984; Green et al., 1988), and Bayesian image restoration methods 
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(Winkler, 2003). It should be noted that all these methods, do explicitly take the spatial 

(contextual) aspect of the problem into account. Some of them are multivariable and consider 

multiple bands simultaneously, and some of the methods use training data (e.g. discriminant 

analysis), while others do not (e.g. smoothing or Min/Max autocorrelation factors).

Application of geostatistical methods to remote sensing research is a little bit harder to 

imagine: the typical geostatistical problem where we have data at a fi nite amount of locations 

and want to predict (interpolate) or simulate values at unsampled locations does typically 

not hold when the primary variable of interest is a complete image. Th e image may however 

not be complete, and a notable exception is the replacement of clouded pixels with estimates 

based on surrounding, non-clouded pixels (Addink and Stein, 1999). De Jong et al. (2003) 

present another approach, where the primary variable of interest is  aboveground biomass, 

measured for a limited number (120) of 30 m by 30 m plots in the fi eld. From the 79 available 

DAIS7915 hyperspectral scanner images, fi ve images, R1, … , R5, were selected to predict log-

transformed aboveground biomass (AB) at each location s using a multiple linear regression 

model:

Figure 2.5 – Part of the Peyne DAIS7915 image in false colour band combination. Th e location of the 

fi eld samples for aboveground biomass estimates are indicated (+).
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log (AB (s)) = b0 + b1R1 (s) + b2R2 (s) + … + b5R5 (s) + e (s)  (2.2)

and assumed that the residual e(s) is a spatially correlated, second order stationary variable. 

Prediction under this model is called universal kriging (or external drift kriging). Figure 2.5 

shows an overview image (false colour composite) of the study area, and fi gure 2.6 shows the 

predicted values of biomass. Th e remote sensing images clearly have a large infl uence on the 

interpolated surface.
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Figure 2.6 – Aboveground biomass predicted by universal kriging. Biomass values range from 0 

(dark) to 50 kg/m2 (bright).
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In eff ect, hyperspectral remote sensing images are now used to globally predict biomass 

through a multiple regression relationship, and this component becomes dominant in areas 

with few spatially correlated measurements nearby; and spatial correlation in regression 

residuals helps interpolation nearby measurement locations.

Atkinson and Lewis (2000) review the various forms of using the variogram in classifying 

remote sensing images. Th is varies from using local sample variogram maps (Carr, 1996) to 

characterize spatial structure to  parametric estimation of the variogram range parameter 

(Ramstein and Raff y, 1989); Herzfeld used detrended variogram coeffi  cients to classify 

sea fl oor types, Wallace et al. (2000) used a similar analysis to classify desert vegetation 

communities. Bocher (2003) and Song and Woodcock (2003) investigate the use of the 

 Average Local Variance function (ALV) respectively variograms to determine the optimal 

pixel size and the eff ect of scale in high resolution imagery for forest applications.

De Gruijter (1999) gives an overview of  spatial sampling schemes for collecting ground 

truth data for remote sensing applications. Most of his review considers design-based 

approaches, where randomness comes from random sampling, i.e. random assignment of 

sample locations; model-based (geostatistical) approaches to choosing sampling schemes 

are reviewed only briefl y. Model-based sampling schemes are often designed ad-hoc. Th eir 

design is less straightforward because the objectives are usually not simple: the sample 

data are needed both for inference of the spatial correlation structure, as well as for spatial 

prediction of the variable measured.

One important issue that is dealt with by geostatistics is change of support.  Support is the 

physical size of a single measurement. When we increase the support of our measurements, 

the variability of the measurements decreases because the spatial variability of our subject 

inside the area on which we measure increases. Regularization is the measurement of 

averages over larger areas. Th e theory of regularization is briefl y reviewed by Curran and 
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Figure 2.7 – A user-defi ned Epsilon band is drawn along the spectral signature and used to separate 

spectral homogeneous image sections from heterogeneous image parts.
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Atkinson (1999), and dealt with extensively by Journel and Huijbregts (1983). Th e dependence 

of variability on measurement support is important for choosing pixel sizes and for collecting 

ground truth data. Pixel sizes can be chosen to some extent, as we can scale up (smooth) 

images to get data on a larger support than the support of pixels in the original image. 

Depending on the variable of interest, we can often choose a support for our measurements 

of ground truth data. If this support is e.g. smaller than that of the images, one should take 

into account the variability of measurement data within pixels of the image, when comparing 

pixel values with ground truth measurements at corresponding locations.

2.5 The spatial and spectral classifi er

In the previous sections we introduced and discussed a number of topics: natural spatial 

variability that occur in landscapes, methods that were developed in various scientifi c 

disciplines to handle and quantify this spatial variability, the way pixels are used in remote 

sensing to capture information about objects at the earth surface, statistical models and 

geostatistical methods to capture spatial variability. Looking back at how remote sensing 

plays a role in our mapping eff orts we may conclude that for quite a number of landscape 

conditions spectral pixel-by-pixel classifi cation algorithms perform in a satisfactory way and 

provide useful products. In some situations where we have open type of vegetation such as in 

Mediterranean areas or Savannah type regions, contextual classifi cation algorithms may yield 

better results. But also within one remote sensing scene we might want to use a combination 

of spatial and spectral analysis methods. For closed vegetation types within one scene we 

prefer to use spectral pixel-by-pixel classifi ers while in that same scene we would like to 

use contextual approaches for shrub vegetations. A straightforward approach to achieve a 

separation of areas within one scene where per-pixel methods are more appropriate and 

where contextual methods will perform better was proposed for hyperspectral imagery by 

Hornstra et al. (2000) and De Jong et al. (2001) and is referred to as the  spatial and spectral 

classifi er (SSC).

Th e SSC method is applied to a hyperspectral image in three steps:

1   Stratifi cation: extraction of homogeneous regions on the basis of spatial and spectral 

information;

2  Classifi cation of the homogeneous regions;

3   Classifi cation of the remaining (non-homogeneous) image parts.

In the stratifi cation step a kernel is moved over the image. Th is kernel considers the spectral 

signature of four neighbours (left, right, above, under) with the spectral signature of the 

centre pixel. Th e similarity between the spectrum of the centre pixel and the spectra of its 

four neighbour is computed and a user-defi ned epsilon band along the spectrum as shown 

in fi gure 2.7. If the spectral signatures fall within the bandwidth of the epsilon line the centre 

pixel is labelled as a homogeneous area, otherwise it is labelled as a heterogeneous. A second 

criterion for a homogeneous area in the image is that it comprises at least 5 connected pixels.

In the second step of SSC the average spectral signature of each homogeneous area, i.e. 

a set of interconnected pixels, is computed and assigned to every pixel in this area. Next, 
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the homogeneous areas are classifi ed following a supervised classifi cation approach. Areas 

of known land cover are digitised on screen, their spectral properties are sampled and the 

conventional minimum distance to mean classifi er is used to assign each pixel to thematic 

classes (Schowengerdt, 1997). As a result the classifi cation of these homogeneous image parts 

is purely based on spectral information.

In the third step of SSC the heterogeneous areas are treated. Th ese pixels are classifi ed using 

spatial and spectral information. Th e minimum distance to mean classifi er is adjusted in 

such a way that it accounts for the spectral signature of the pixel and for the spatial pattern 

of previously classifi ed pixels in its neighbourhood. Class assignment of the conventional 

minimum distance to mean rule is based on the spectral, Euclidean distance between the pixel 

and the mean of every land cover class. In the SSC approach not only this spectral distance is 

considered but also the spatial distance between an unclassifi ed pixel and a previous classifi ed 

pixel in step 2 of SSC where the homogeneous-labelled pixels are thematically assigned. 

Th is spatial distance is computed using a growing ring (kernel) of pixels surrounding the 

unclassifi ed pixel. Th e contribution of spatial versus spectral information to the classifi cation 

rule can be adjusted using a factor . Th e assignment of pixels to thematic land cover classes 

is based on the smallest value of the combined spatial distance and spectral distance using the 

following formula:

C = min (  · dspec + (1 - ) · dspat)  (2.3)

Where C is the thematic land cover class, dspec: the spectral distance between the unclassifi ed 

pixel and the mean of the land cover class, dspat: the spatial distance between the unclassifi ed 

pixel and a previously classifi ed pixel using the growing kernel and – is a factor to adjust the 

contribution of spectral versus spatial information in the classifi cation procedure. In case of a 

chosen value of 0.5 for – the contribution of the spectral and spatial rule resembles. A value 

of 1.0 for – will result in a SSC classifi cation that is purely based on spectral information.

Th e SSC method is tested and evaluated on a study area in southern France comprising 

an agricultural area of mainly vineyards and a natural vegetated area consisting of an open, 

complex Mediterranean shrub vegetation. Classifi cation improvements for the agricultural 

area were modest but for the natural region the classifi cation results improved signifi cantly. 

More details about the SSC and these results are available in Hornstra et al. (2000) and De 

Jong et al. (2001). Th e SSC method is a nice example how we can combine the use of spectral 

and spatial pattern information in image classifi cation procedures.

2.6 Conclusions

In this chapter we have discussed the problems of scale and temporal and spatial variability 

of landscapes and landscape processes. Over the years researchers have investigated in many 

diff erent directions for methods to handle the problems of scale and the problems of spatial – 

temporal variability for surveying purposes and for process simulation studies. Th ese methods 

include the development of hierarchical mapping methods such as the land system approach, 

various methods to defi ne assumed homogeneous map units such as the REA: Representative 
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Elementary Area, HRU: Hydrological Response Unit and DRU: Desertifi cation Response 

Unit. Later on, when computer power became widely available, also fractal and wavelets 

methods to quantitatively express scale invariance or ‘landscape roughness’ were and are 

investigated. In this chapter we also looked briefl y at the development of statistical models 

to handle spatial variability and scale issues, and how variograms, interpolation methods 

and uncertainty assessments have grown out to common tools for geographers, geologists, 

ecologists and botanists. Th e role of earth observation for these disciplines, what type of 

information these sensors collect, how this information is technically collected and how 

useful information can be extracted from the images is also briefl y touched upon. Remote 

sensing provides spatially distributed information of the landscapes or regions of interest and 

provides time series of images allowing us to detect changes over time. Remote sensing image 

analyses has focussed very much over the last decennia on the spectral analysis of images i.e. 

the spectral signature. Less attention is paid to the spatial patterns captured by these images 

while these spatial patterns have always yielded the basis for mapping and modelling eff orts 

in environmental disciplines. Th e following chapters in this book will present a wide range 

of methods to analyse and quantify these spatial patterns captured in images acquired at 

diff erent levels of scale and over various time steps and how these methods are useful to 

bridge the gap between surveying, geostatistical approaches and remote sensing.



Chapter 3

Sub-Pixel Methods in Remote Sensing

Giles M. Foody

3.1 Introduction

Th eoretically, remote sensing is well-suited as a source of information on environmental 

features such as land cover. Remotely sensed imagery are available at a range of spatial and 

temporal scales, have a map-like format and, due to the nature of radiation interactions 

with the Earth’s surface, depict variation in land surface properties that is linked to land 

cover. Indeed, as most general land cover classes (e.g. forest, grassland etc.) diff er in their 

interaction with the radiations commonly used in remote sensing, it should be possible to 

accurately map and monitor land cover from remotely sensed data. Although the literature 

contains an enormous wealth of articles that demonstrate that it is possible to accurately 

map land cover from remotely sensed data it is often, in practice, an extremely diffi  cult task 

(Townshend, 1992). Th ose studies that have succeeded in accurately mapping land cover 

have also commonly been based upon small test sites, often with ideal conditions (e.g. large 

relatively homogenous land cover parcels, insignifi cant topographic variability etc.) and used 

carefully selected and processed imagery. Th ese successes do not mean it is generally easy 

to extract land cover information accurately from remotely sensed data. Th ere are many 

instances in which an approach to land cover mapping developed successfully at one site fails 

to map land cover accurately when applied to another (Wilkinson, 1997; van Collie et al., 

2001). Consequently, it is unsurprising that  land cover maps often contain considerable error. 

For example, the IGBP global land cover map derived at the end of the last century provides 

a representation of the Earth’s land cover that is estimated to have an area-weighted accuracy 

of ~67, substantially below its target accuracy of 85 (Scepan, 1999). Th us despite a long 

history of research into the topic and a widely held view that land cover mapping is a basic 

and simple task it is apparent that the potential of remote sensing as a source of land cover 

data is unfulfi lled (Townshend, 1992; Estes & Mooneyhan, 1994).

Many factors conspire to limit the ability to map land cover accurately from remotely sensed 

data. Th ese range from issues associated with the sensor (e.g. the spectral wavebands in which 

it operates, its spatial resolution etc.), atmospheric attenuation (e.g. dynamic variation in 

haze and dust particles) and the methods used (e.g. the image analysis procedures used in 

mapping). In addition to these variables there are further, more subtle, complications. For 

example, the ground or reference data sets used in assessing the accuracy of a map derived 

from remote sensing often contain error and may lead to incorrect interpretation about the 

accuracy of the derived map (Foody, 2002a). Th e various factors that may act to limit map 

accuracy have been the focus of many investigations. In particular, since remotely sensed 

37

S.M. de Jong and F.D. van der Meer (eds.),

Remote Sensing Image Analysis: Including the Spatial Domain, 37–49.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



38 – G.M. Foody

imagery should be an excellent source of land cover information much attention has been 

directed at the image analysis procedures used, with the aim of fi nding tools that can extract 

more fully the land cover information contained in the imagery than the conventional 

techniques used widely in the past.

While many important and useful advances have been made by research into image analysis 

and classifi cation techniques, a fundamental assumption that is commonly made in remote 

sensing is often unsatisfi ed. Th is assumption is that each pixel in the image represents an area 

on the Earth’s surface that contains a single class. Th is is often not the case, with  mixed pixels, 

containing areas of more than one class, present (Fisher, 1997; Cracknell, 1998). Th ese mixed 

pixels cannot be allocated appropriately to a single class, irrespective of what method is used 

to derive that allocation. Without solving the problem of mixed pixels it is likely that the 

full potential of remote sensing as a source of land cover information will remain unrealised. 

a b c d
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Figure 3.1 – Some common origins of mixed pixel problems. Th e diagram shows an extract of a 

satellite sensor image, perhaps part of a scan line of data, with four pixels highlighted. Each of 

the highlighted pixels represents a commonly observed mixing problem: (a) mixing caused by the 

presence of small, sub-pixel, targets within the area it represents, (b) mixing as a result of the pixel 

straddling the boundary of discrete thematic classes, (c) mixing due the gradual transition observed 

between continuous thematic classes and (d) a mixing problem due to the contribution of a target 

outside the area represented by a pixel but infl uenced by its point spread function (note that the pixel 

appears, superfi cially, to be pure but its spectral response is infl uenced by the small object that lies 

outside of the area represented).
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Th ere is, therefore, a need to derive thematic information at sub-pixel scales to reveal the 

nature of the class mixing. Th is chapter aims to discuss the mixed pixel problem and then 

outline some of the methods that may be used to determine sub-pixel scale thematic 

information. Th e ability to estimate sub-pixel scale information accurately would greatly 

facilitate the extraction of accurate and informative information from remotely sensed data 

and is the basis of contemporary  super-resolution mapping approaches that are discussed in 

chapter 4 of this volume by Atkinson.

3.2 Mixed pixels

A remotely sensed image is simply a representation of the way radiation interacts with the 

Earth’s surface. As a representation of the environment some degree of inconsistency with 

reality is to be expected. Various sources of inconsistency may be identifi ed but of particular 

signifi cance to the topic of this chapter is a basic property of the remotely sensed imagery. 

Typically the imagery comprise raster data and the fundamental spatial unit, the pixel, is 

defi ned primarily by sensor dependent variables. Th at is, the pixel is an arbitrary spatial unit. 

Its basic properties such as size, shape and location are determined mainly by the sensor (e.g. 

its altitude, look angle, fi eld of view etc.) and not directly by the properties of the ground. 

Commonly, the area represented by a pixel will contain more than one thematic class. Th is 

situation may arise for many reasons (e.g. fi gure 3.1) and makes the data unsuitable for use 

with some conventional image analysis techniques. Consequently, the use of conventional 

‘hard’ (one pixel one class) approaches to mapping from remotely sensed data will result in 

error if mixed pixels are present. Th e magnitude of the problem is also clearly a function of 

the proportion of mixed pixels within the remotely sensed data set.

Th e proportion of mixed pixels in an image is often large in remote sensing studies. Th e 

exact proportion of mixed pixels in an image is an interactive function of the properties 

of the sensor (e.g. spatial resolution) and land cover mosaic on the ground (e.g. the class 

composition, spatial arrangement etc.) and so the mixed pixel problem is a  contextual issue. 

In general, the proportion of mixed pixels increases with a coarsening of the spatial resolution 

of the sensor and/or increasing fragmentation of the landscape represented by the image and 

there may be many more mixed than pure pixels within the image (Crapper, 1984; Campbell, 

2002). Th us, coarse spatial resolution data sets such as those derived from the NOAA 

AVHRR (1.1 km spatial resolution) that are the foundation of many large area mapping 

investigations (Belward et al., 1999; Cihlar, 2000) are often dominated by mixed pixels (e.g. 

Foody et al., 1997).

As mixed pixels cannot be sensibly accommodated in a conventional hard image analysis, 

researchers have attempted to reduce the problem. Some have sought to use very fi ne 

spatial resolution imagery in the hope that this will reduce the proportion of mixed pixels. 

Unfortunately, the mixed pixel problem may not be removed by the use of fi ne spatial 

resolution data as mixing of a class’s constituent parts (e.g. leaves, branches, trunks and soil 

surfaces of a forest class) often becomes increasingly important and over large areas the use of 

fi ne spatial resolution data may be impractical.
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Figure 3.2 – An example of a typical sub-pixel analysis. Here a sub-pixel analysis (e.g. a linear 

mixture model or soft classifi cation) is used to convert the multispectral image that depicts the spatial 

variation in surface radiance into fraction images that in turn depict the location of four land 

cover classes. In each fraction image the grey scale indicates the fractional cover of a class (100 

cover – white; 0 cover – black). Th e ‘target’ image is a fi ner spatial resolution image of the input 

multispectral data set used to indicate the actual spatial distribution of thematic classes at the test 

site.



Sub-Pixel Methods in Remote Sensing – 41

Since mixed pixels cannot be appropriately mapped by conventional methods alternative 

image analysis techniques have been evaluated. Often researchers have sought to derive sub-

pixel scale information and some approaches for this are outlined below.

3.3 Estimating sub-pixel class composition

A variety of approaches may be used to derive sub-pixel scale information (Eastman & 

Laney, 2002). Here, two popular approaches to the derivation of sub-pixel scale information 

are briefl y discussed. Th ese are the use of additive,  linear mixture, models and soft or sub-pixel 

classifi cations (Eastman & Laney, 2002). Each approach may be used to derive information 

on the sub-pixel scale thematic composition of image pixels. Commonly, these approaches are 

used to derive an estimate of the proportional coverage of each class in the area represented 

by a pixel but other information is sometimes derived. For example, sometimes the desired 

output may simply be a primary and secondary class label (Woodcock et al., 1996). Th e 

nature of the derived output impacts markedly on the means of its visual representation. 

Frequently, the derived sub-pixel information is mapped as  fraction imagery or continuous 

fi elds (Shimabukuro et al., 1997; DeFries et al., 2000; Frizzelle & Moody, 2001), to represent 

the spatial distribution of the classes over the region imaged. As a simple example, fi gure 3.2 

indicates the form output that is typically derived from a sub-pixel analysis.

.. Spectral unmixing

Th e basic and widely used linear mixture model is based on the assumption that the spectral 

response xk of a pixel k is a linear weighted sum of spectral responses of its component classes 

(Settle & Drake, 1993), expressed by

xk = Ef + e  (3.1)

in which E is a q by c matrix in which q represents the number of wavebands and c the 

number of classes, the term f represents a vector, of length c, that expresses the proportional 

coverage of the classes in the area represented by the pixel and e is a term that represents 

the residual error. Th e columns of the matrix E are  end-member spectra, essentially the 

characteristic spectral responses of the classes. Th ese can be diffi  cult to defi ne appropriately 

(Williamson, 1994; Atkinson et al., 1997; van der Meer & de Jong, 2000; Wu & Murray, 2003) 

and are commonly determined from ‘pure’ training areas. Once defi ned, the mixture model 

may be used to estimate the class composition of a pixel, represented by f, from its spectral 

response (Cross et al., 1991; Settle & Drake, 1993) subject to the constraints that

f i ≥ 0, i = 1,... c and  (3.2)

f i = 1
n=1

c

 (3.3)

Th is simple approach to deriving sub-pixel information has been used widely in remote 

sensing (e.g. Cross et al., 1991, Drake & White, 1991; Quarmby et al., 1992; Cochrane & 

Souza, 1998; DeFries et al., 2000; Lucas et al., 2002). Commonly, the spatial distribution of 

the land cover classes is represented through fraction images. Typically there is one fraction 
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image for each class and in this representation the pixel’s grey level scale is directly related 

to the proportional coverage of the class in the area represented by the pixel. Th us, a pixel 

representing an area that is comprised entirely of the class may be represented in white while 

one representing an area in which the class is absent would be black (fi gure 3.2).

Despite its simplicity and ability to derive accurate sub-pixel estimates under certain 

circumstances there are some concerns about the use of this approach to pixel  unmixing. 

Th e use of the least squars error criterion, for example, makes the unmixing analysis prone to 

problems associated with outliers. A simple alternative that reduces this eff ect is to base the 

unmixing analysis on a least median square criterion (Rosin, 2001). Similarly, the assumption 

of linear mixing is often inappropriate in remote sensing, particularly of vegetated regions 

where the radiation interactions with the environment are known to be non-linear. In such 

circumstances non-linear mixing models may be more preferable than the basic linear model 

(Borel & Gerstl, 1994; Foody et al., 1997). Finally, the approach requires that the number of 

end-members is less than the number of spectral bands used in the analysis (Mather, 1999).

.. Soft classifi cation

Hard supervised image classifi cation techniques have been widely used for mapping land 

cover from remotely sensed data. Th ese techniques operate by allocating each pixel in the 

image to one of the classes in the set defi ned by the analyst. For example, with the  maximum 

likelihood classifi cation, one of the most widely used hard classifi ers in remote sensing, 

each pixel is allocated to the class with which it has the highest posterior probability of 

membership (Tso & Mather, 2001). Irrespective of the specifi c classifi er used to derive the 

class allocations, a number of important assumptions are made in hard classifi cation. In 

particular, it is typically assumed that the pixels are pure and that the classes are discrete, 

mutually exclusive and have been defi ned exhaustively. Since some or all of these assumptions 

are often untenable in remote sensing applications alternative approaches to mapping have 

been the topic of considerable recent research. Of relevance here is the development of soft 

or fuzzy classifi cations which can provide thematic information at sub-pixel scales.

In soft thematic mapping, each pixel is not forced or constrained to show membership to 

a single class. Consequently, each pixel may display multiple and partial class membership; 

since a single class label is no longer forced upon pixels the output is fuzzy but to avoid 

confusion with fuzzy sets and logic the term soft rather than fuzzy classifi cation may be 

more appropriate. Since multiple and partial class membership is accommodated in a  soft 

classifi cation these techniques may sometimes be a useful means of reducing the mixed 

pixel problem and acquiring sub-pixel scale thematic information (Fisher & Pathirana, 1990; 

Foody, 1996).

Sub-pixel scale information is typically represented in the output of a soft classifi cation 

by some measure of the way class  membership is partitioned amongst the classes. Th e 

membership properties of pixels can be represented in a variety of ways in the output of a 

soft classifi cation which infl uences the detail and accuracy of sub-pixel scale information 

conveyed by the analysis. Frequently, the grade or strength of membership a pixel displays 

to each class is derived and with many of the popular approaches to soft classifi cation the 

measure(s) of the strength of class membership derived for a pixel are taken to refl ect the 
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relative proportion of the classes in the area represented by the pixel. Th is type of approach 

allows a representation similar to the fraction images derived from linear unmixing methods 

to be generated (fi gure 3.2).

One problem with both the standard approach to unmixing and soft classifi cation is the 

requirement to have defi ned all the classes (or end-members). Some soft classifi cation 

approaches may, however, be useful if the set of classes has not been defi ned exhaustively. 

Th us for example, a soft classifi cation depicting the spatial variation in the absolute strength 

of class membership may sometimes provide a more appropriate basis for thematic mapping 

than conventional approaches based on relative measures of class membership (Foody, 2000b; 

2002b). Various measures of class membership have been used in soft classifi cations and some 

are are outlined below.

Many methods may be used to derive a measure of the strength of class membership that 

can be used to form a soft thematic map. Th e following sections briefl y outline a selection of 

techniques that have been used recently in remote sensing applications; other approaches may, 

of course, be used. Th e approaches that have been commonly used in remote sensing studies 

range from those based upon the popular and established conventional statistical classifi ers 

such as the maximum likelihood classifi er through techniques based on  evidential reasoning 

to  neural network based approaches that have recently become a popular tool for the analysis 

of remotely sensed data (Tso & Mather, 2001). Some of the approaches are normally used in 

remote sensing for the production of hard classifi cations while others are fuzzy classifi ers, the 

output of which may, of course, be hardened to give a conventional crisp class allocation. Th e 

salient features of some of the widely used approaches, including the measures of the strength 

of class membership derived, are briefl y outlined in the remainder of this section.

... Maximum likelihood classifi cation

Th e standard maximum likelihood classifi cation, one of the most widely used hard 

classifi cation techniques in remote sensing, has often been adapted for the derivation of 

sub-pixel scale information. Although the maximum likelihood classifi er is a conventional 

statistical classifi cation technique that allocates each pixel to the class with which it has the 

highest likelihood or a posterior probability of membership (Schowengerdt, 1997; Mather, 

1999b) it can be softened (Foody et al., 1992).

Th e basis of the maximum likelihood classifi cation, and other related probabilistic classifi ers 

which may be used in the same way, is the probability density function, which may be derived 

from,

 (3.4)p (xk|i) = —––––––– exp (- – D2)
1

2

1

√2  √|Mi|

where p(xk|i) represents the probability density function for the pixel k with the data vector 

xk as a member of class i, Mi is the variance – covariance matrix for class i and D2 is the 

Mahalanobis distance between the pixel k and the centroid of class i. Th e Mahalanobis 

distance may be calculated from,
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D2 = (xk - vi)
T Mi

-1 (xk - vi)  (3.5)

where vi is the mean vector for class i. Th e calculated  Mahalanobis distance may be converted 

to a typicality probability by reference to a chi-squared distribution (McKay & Campbell, 

1982). Th ese probabilities lie on a 0-1 scale and represent the probability of observing a 

Mahalanobis distance as extreme as that observed for a particular pixel with respect to the 

specifi ed class. Th us, the typicality probability provides an indication of the closeness of 

the pixel to a single specifi ed class centroid. Th at is, the typicality provides a measure of 

the absolute strength of membership a pixel has to an individual class, irrespective of its 

membership to any other class. Note that the sum of the typicalities to all specifi ed classes 

needs not sum to 1.0 for any one pixel. Th ese properties of the typicality make it a very 

diff erent measure of class membership to the posterior probability.

In a standard maximum likelihood classifi cation, each pixel is allocated to the class with 

which it has the highest  posterior probability of class membership, which is calculated from,

 (3.6)L(i|xk) = –––––––––– 
Pip (xk|i)

Pjp (xk| j)
j=1

c

where L(i|xk) represents the posterior probability of pixel with the data vector xk belonging 

to class i, Pi the a priori probability for class i, and c the total number of classes. Posterior 

probabilities of class membership lie on a 0-1 scale but they are also constrained to sum to 

1.0 for each pixel and are derived with respect to all defi ned classes (Campbell, 1984; Foody 

et al., 1992; Mather, 1999b). Th us, the posterior probability provides a relative measure of 

class membership. Th is situation makes the posterior probability attractive as an indicator of 

sub-pixel proportions. Indeed, posterior probabilities derived eff ectively as a by-product of a 

conventional maximum likelihood classifi cation have been commonly used to estimate the 

composition of pixels. Although there is not a direct link between the proportional coverage 

of a class and its posterior probability (strictly an indicator of the uncertainty in making a 

particular hard class allocation), leading to its use a source of sub-pixel information being 

questioned (Lewis et al., 1999; De Bruin, 2000) many studies have found that, in practice, 

useful sub-pixel thematic information may be derived by this approach (e.g. Foody, 1996, 

Bastin, 1997).

... Fuzzy c-means (FCM)

Th e  FCM is a  fuzzy classifi er that has been widely used for the derivation of sub-pixel scale 

thematic information (Fisher & Pathirana, 1991; Foody, 1996; Atkinson et al., 1997; Bastin, 

1997). Th e FCM is, essentially, a non-hierarchical clustering algorithm that may be used to 

sub-divide a data set into c classes. Pixels are initially assigned randomly to classes before 

being moved iteratively to other classes with the aim of minimizing the generalised least-

squared error,

Jm(U, v) =  (uik)
m (dik)

2

i=1

c

k=1

n

 (3.7)

where U is a fuzzy c-partition of the data set containing n pixels (x1, x2, ..., xn), vi is the 

centre of cluster i, dik is the distance between xk and vi measured using an appropriate 
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weight matrix and m is a user defi ned weighting component that lies within the range 

1≤m≤∞ which determines the degree of fuzziness of an analysis. When m=1 a conventional 

hard classifi cation is obtained in which each pixel is associated unequivocally with just one 

class. For the derivation of sub-pixel scale information, it is, therefore, important that m>1, 

ensuring that multiple and partial class membership is allowed in the output. Th ere is no 

optimal value of m and most studies have used a value in the range 1.5<m<3.0 (Bezdek et al., 

1984; McBratney & Moore, 1985; Foody, 1996). In a soft classifi cation, attention is focussed 

on the elements of U, uik, that represent the grade of membership of a case to a class. Th ese 

membership values are constrained to satisfy,

uik  [0, 1]  (3.8)

 uik > 0, i = 1, …, c
k=1

n

 (3.9)

 uik = 1, k = 1, …, n
i=1

c

 (3.10)

In a  fuzzy c-partition of a data set, the membership functions characterise the membership 

of each case in all classes. Memberships close to unity indicate a high degree of similarity 

between a case and a class whereas memberships close to zero indicate little similarity 

between a case and a class. It is apparent from the constraints defi ned above that the 

memberships lie on a 0-1 scale and sum to unity for each pixel. Th ese constraints make the 

fuzzy memberships appear similar in general terms to posterior probabilities, although they 

are in reality quite diff erent. Th e memberships are calculated from,

 (3.11)uik = ––––––––––
1

 –––  
j=1

c dik

djk

m-1
2––

(Bezdek et al., 1984; Schowengerdt, 1997).

Although the FCM was originally proposed as a clustering (unsupervised) technique, the 

algorithm may be modifi ed so that the classifi cation is based on class centres provided by the 

analyst from training samples and so for use as a supervised classifi er (Key et al., 1989; Foody, 

1996). Indeed, the FCM has been commonly used in a supervised mode to derive sub-pixel 

scale thematic information from remotely sensed data (e.g. Foody, 1996; Atkinson et al. 1997; 

Bastin, 1997; Lucas et al., 2002). Although accurate estimates of sub-pixel class composition 

have been derived with the FCM it is apparent that accuracy is a function of the value of 

m used in the analysis (Foody, 1996) and thus this value should be carefully selected for the 

application in-hand.

... Possibilistic c-Means (PCM)

Th e  PCM is the possibilistic counterpart of the FCM. Th e main diff erence between the 

PCM and the more widely used FCM is the removal of the constraint for the memberships 

to sum to one for each pixel in the PCM (Krishnapuram & Keller, 1993; Foody, 2000b). With 

the PCM the strength of membership is derived from,
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 (3.12)uik = ––––––––––
1

1 +  –––  
dik

i

2

where i is a parameter that specifi es the distance at which the membership to a class equals 

0.5. As with the FCM, the parameter m controls the fuzziness of the analysis but its optimal 

value and interpretation diff ers between the two algorithms (Krishnapuram & Keller, 1996). 

Th e main attraction of the PCM for the derivation of sub-pixel scale thematic information 

is that, like the typicality probability, the membership values derived are measures of the 

absolute strength of class membership. Consequently, the memberships derived from 

the PCM are not aff ected by the presence of untrained classes. Although more accurate 

predictions of sub-pixel class composition may be derived from the FCM than PCM, the 

presence of untrained classes can markedly degrade the accuracy of sub-pixel estimates from 

the FCM while not aff ecting those from the PCM. Th us, in situations when the analyst 

may believe that the set of classes contained within the imaged area has not been defi ned 

exhaustively it may be preferable to use the PCM rather than FCM for the derivation of sub-

pixel scale thematic information (Foody, 2000b).

... Neural networks

 Neural networks have recently become a very popular tool for the derivation of sub-pixel 

scale thematic information from remotely sensed data (Tso & Mather, 2001). A variety of 

types of network have been used for the derivation of sub-pixel scale thematic information, 

notably feedforward networks.

Feedforward networks have been widely used for the classifi cation of remotely sensed data. 

A variety of feedforward networks have been used for estimating sub-pixel scale thematic 

information, including the multi-layer perceptron, radial basis function and probabilistic 

neural networks (Foody, 2001). While there are marked diff erences between these networks, 

each is constructed from a set of simple processing units that are arranged in a layered 

architecture with each unit in a layer linked to every unit in the adjacent layer(s) by a 

weighted connection. Th e architecture is determined, in part, by the data to be used and 

nature of the desired classifi cation. For example, there is usually an input unit for each 

discriminating variable used (e.g. each spectral channel in the remotely sensed data set) and 

an output unit for each class to be mapped, although diff erent architectures may be used 

(e.g. if the input data are thermometer encoded more input units may be required). Th e 

specifi cation of network architecture is a subjective process, with no universally accepted rules, 

and the set of parameters to defi ne diff ers between the various types of network available, 

although some contentious heuristics exist that may be used guide the construction of the 

network (e.g. Wang, 1994; Kanellopoulos & Wilkinson, 1997; Kavzoglu and Mather, 2001).

One attractive feature of feedforward networks for soft classifi cation is the ability to directly 

include mixed pixels in the training stage, as the desired output vector for each training case 

can be specifi ed (Foody et al., 1997); training may, however, be based upon pure pixels only. 

Once trained a feedforward neural network may be used to predict the class membership 

properties for other pixels in the data set. In a conventional hard classifi cation, each pixel is 

typically allocated to the class associated with the most highly activated unit in the output 
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layer of the network. However, the magnitude of the outputs units may also be used to 

indicate the strength of class membership, which may be used to indicate sub-pixel class 

proportional cover. Th e outputs of the diff erent types of network should, however, be treated 

diff erently. While the activation level of output units from each type of network can be 

expressed on a 0-1 scale such outputs should not necessarily be viewed as proportions or 

probabilities. For example, the sum of the activation level of all output units for a multi-layer 

perceptron may diff er markedly from 1.0 (Foody, 2000a) and of the networks identifi ed above 

only the probabilistic neural network outputs values that are essentially posterior probabilities 

(Foody, 2001). However, in many studies the magnitude of the activation level of output units 

has been found to be strongly related to the class composition (Foody, 1996; Atkinson et al., 

1997; Moody et al., 1996; Frizelle & Moody, 2001).

In addition to the feedforward networks, other types of neural network have been used in 

sub-pixel scale studies. In particular, neural networks, based upon  adaptive resonance theory 

(ART) and especially the ARTMAP type of network have been used to derive sub-pixel 

scale thematic information, Further information on the use of this type of neural network 

for the derivation of a soft classifi cation is given by Carpenter et al. (1999) and Gopal et al. 

(1999).

3.4 Current research topics

Although there has been considerable research directed at sub-pixel scale issues in recent 

years there is considerable scope for further development. Presently, research is addressing 

a series of issues, including further development of the methods to extract sub-pixel scale 

thematic information, the evaluation of the accuracy of the calculated sub-pixel estimates and 

the design of refi ned means of representing the derived information.

Many other approaches in addition to those outlined above may be used for the derivation 

of a soft classifi cation from which information on sub-pixel information can be derived. For 

example,  evidential reasoning, based on Dempster-Shafer theory, may be used to indicate 

sub-pixel scale thematic information. To-date, evidential reasoning has been used mostly 

for the conventional hard classifi cation of remotely sensed data (Lee et al., 1987; Wilkinson 

& Megier, 1990; Srinivasan & Richards, 1990; Peddle, 1993) as an alternative to standard 

statistical classifi ers as it may accommodate uncertainty and ignorance that is often inherent 

in data sets. Th is is particularly useful when a diverse range of data sets of varying quality 

have been brought together for a classifi cation (Richards et al., 1982). Evidential reasoning 

based approaches can, like the classifi ers discussed above, be adapted for the production of a 

soft classifi cation that conveys sub-pixel scale class composition information. For example, it 

is possible to map for each class the belief and plausibility measures, upon which the analysis 

is based. Although these may be diffi  cult to interpret, particularly if precise information on 

the pixel composition is desired, the approach is worthy of further investigation. Another 

method that has considerable potential and which has recently been used for the derivation 

of sub-pixel information is based on support vector machines (SVM). SVMs can, under some 

circumstances, be equivalent to linear mixture models but may also be used for non-linear 

mixing (Brown et al., 1999; 2000).
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Accuracy assessment is now widely accepted as a fundamental requirement for thematic 

classifi cations derived from remotely sensed data (Tso & Mather, 2001). Th is is true whether 

the information was derived from hard or soft classifi cations. Th e assessment of accuracy, 

particularly for soft classifi cations, is however, extremely diffi  cult (Foody, 2002). Commonly, 

the accuracy of sub-pixel estimates is assessed by correlation of the derived estimates against 

those observed on the ground for a testing set or through the calculated root mean square 

error of the estimates. Although these measures provide a guide to accuracy of sub-pixel 

estimates they are far from complete measures of accuracy and further development on this 

topic is required.

Th e representation of sub-pixel thematic information is a diffi  cult but important task. Map 

users typically want an easy to use map product, like a standard hard classifi cation, but the 

output of a soft classifi cation may be larger and more diffi  cult to interpret. Th e output of 

a soft classifi cation could for example, comprise a fraction image for each class which is 

diffi  cult to compress into a readily interpretable map product. If the imagery contain few 

mixed pixels, it may be more appropriate in some circumstances, to use conventional hard 

techniques. Similarly the nature of the mixing can be important in selecting an appropriate 

form of visual representation. Since the number of classes mixed can sometimes be a problem 

some indication of the degree of mixing may be helpful. Th is is a diffi  cult task but  entropy 

may sometimes be used to describe partitioning of membership. Entropy, H, may be derived 

for a pixel from,

H = - p (i) log p (i)  (3.13)

where p(i) is the proportional coverage of class i. Entropy is minimised when the pixel is 

associated with a single class and maximised when membership is partitioned evenly between 

all of the defi ned classes. An image depicting the entropy calculated for each pixel could be 

used to indicate the spatial distribution of class mixing. It may also help guide the selection 

of an appropriate means of representation. Fortunately, in most cases a mixed pixel comprises 

only a small number of classes, usually just two or perhaps three. Th us, it may not be 

necessary to derive a means of representing and storing the membership to all defi ned classes 

and it may be possible to generalise the data for mapping purposes by showing, for instance, 

the primary and secondary classes present. To obtain a guide to the number of classes that are 

present in a pixel, it is possible to quantify the diversity of classes and indicate the presence 

of common and rare classes (Ricotta & Avena, 2002). Drawing on the ecological literature, 

Hill’s diversity numbers may be calculated from,

N (#) = p (i)
i=1

c (1-#)
1–––

 (3.14)

where  specifi ed the order of the diversity number. When =0, 1 and 2 equation 3.16 returns 

the total number of classes contained, the number of abundant classes and the number of 

very abundant classes respectively (Ludwig & Reynolds, 1988).

A further issue related to the representation of the sub-pixel thematic information is that the 

estimates derived do not indicate the spatial distribution of the component classes within the 

area represented by a pixel. Th us, for example, a linear mixture model or soft classifi cation 
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may be used to derive information on the proportional coverage of the classes in a pixel but 

they do not indicate where those fractional components lie. In the fraction image used to 

represent the output, the grey level for a pixel is simply proportional to the estimated coverage 

of the class. Ideally, the results of a sub-pixel analysis would be one in which not only is the 

class-composition of the pixel accurately estimated but that the factions are located correctly 

in space. Th is would provide substantially more information that many users would require, 

indicating greater spatial detail on the landscape mosaic and its fragmentation. Various 

studies have sought to try and locate the class fractions estimated from a soft classifi cation 

(e.g. Foody, 1998, 2002c; Tatem et al., 2001, 2002). Th ese studies typically have an ultimate aim 

of deriving a super-resolution map, one that depicts the thematic classes at a spatial resolution 

fi ner than the imagery from which the map was derived. Super-resolution mapping is a topic 

discussed in greater detail in the chapter by Atkinson (2003, this volume).

Finally, but of fundamental importance, there are concerns over the accuracy of sub-pixel 

composition predictions derived using methods such as those outlined above. Manslow 

& Nixon (2002) identify one major cause of uncertainty in sub-pixel composition 

estimates, that associated with the sensor’s point spread function (PSF), that has important 

implications. Th ey show that because of the PSF all information extracted from the remotely 

image is ambiguous and, with a hypothetical example, that the range of possible estimated 

compositional values for a mixed pixel is very broad. Th is limits not only the accuracy of sub-

pixel estimation but also studies that attempt to study change in sub-pixel proportions. Issues 

such as this require considerable further investigation before the full potential of studying 

subtle changes in class composition associated with, for example, land cover modifi cations is 

realized.

3.5 Conclusions

Th e derivation of thematic information at sub-pixel scales has become an important topic in 

environmental remote sensing. Th is has typically arisen due to recognition that the commonly 

implicit assumption of pure pixels made in many image analyses is invalid, especially as a 

result of mixed pixels. Th is chapter has discussed the background to techniques that have 

commonly been used for the derivation of sub-pixel scale information. In particular, it has 

covered popular approaches such as linear unmixing and soft classifi cation based approaches 

to the estimation of sub-pixel class composition. Th ese estimates provide only a guide to the 

composition of the area represented by a pixel and are subject to signifi cant uncertainties 

(e.g. due to the PSF). Nonetheless, sub-pixel scale thematic information is often useful and 

its accurate extraction represents a major advance in terms of information extraction from 

remotely sensed data over that derived with conventional hard image processing techniques. 

Th e topic is rapidly developing and one current focus of research is refi ning the representation 

of the derived sub-pixel information. Th is work is mainly addressing issues connected with 

locating the estimated sub-pixel class fractions geographically over the area represent by a 

pixel, which is a topic with discussed further in the chapter 4 on super-resolution mapping by 

Atkinson (this volume).



Chapter 4

Resolution Manipulation and 

Sub-Pixel Mapping

Peter M. Atkinson

4.1 Introduction

Although the most obvious source of information in a remotely sensed image lies, pixel-by-

pixel, in its spectral values a second less obvious source of information exists in the spatial 

relations between the pixels. Th is source of information is frequently used implicitly (e.g. 

our brains make use of such information when we interpret a pictorial representation of a 

remotely sensed image) but is increasingly being used explicitly in a range of spatial models 

for the analysis of remotely sensed imagery (e.g., see Atkinson and Lewis, 2000, for a review 

of spatial classifi cation methods). Such spatial models make use of the fact that the set of 

spectral values in an image are augmented by a set of (x, y) pixel locations in a given co-

ordinate system. Th ese pixel locations need not be stored individually: the x and y extremes, 

together with the number of pixels in each co-ordinate direction are suffi  cient, given that 

the spectral values are recorded in a known, ordered sequence (e.g., left-to-right, top-to-

bottom). Knowing the (x, y) pixel locations enriches the spectral information available to the 

investigator, and allows much more than a pixel-by-pixel analysis of a remotely sensed image 

to be conducted. Th is spatial information is fundamental to the geostatistical and spatial 

analyses discussed in this chapter.

It is well known from everyday experience that ‘zooming in’ on a given scene or spatial 

representation will reveal increasing levels of detail. For example, as you move closer to this 

page you may be able to pick out or resolve spatial variation (on the page) or features (e.g., 

individual letters) that would not be resolvable if you were standing several metres away. If 

you were 100 metres away, the text may not be resolvable with the unaided eye, while some 

kilometres away the book itself may disappear completely. Th e same is true when a remotely 

sensed image is acquired of a given ground scene. For a particular sensor, the detail depicted 

in the image depends on the height of the sensor above the ground. At low altitudes the 

image will cover a small area, but resolve much detail, whereas at high altitudes the image 

will cover a larger area, but resolve less detail (per unit area on the ground).

Th e size of the pixels in an image is often referred to in remote sensing as the  spatial 

resolution (although it will be explained below that the pixel size and spatial resolution 

do not have the same meaning). For satellite sensor imagery, the spatial resolution is fi xed. 

When the sensor is mounted on an airborne platform the investigator may determine the 
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spatial resolution prior to data acquisition. However, even in these circumstances the spatial 

resolution is fi xed once the image is acquired and so too is the level of detail in the image (see 

Fisher, 1997).

Th e focus of this chapter is on attempting the seemingly impossible: changing the spatial 

resolution (and, thus, the level of detail) after the image has been acquired. Increasing the 

area that a measurement represents is referred to as  upscaling, whereas decreasing the area is 

referred to as  downscaling (fi gure 4.1). While the former may be achieved through averaging 

of some form, the latter objective is less easily met and has led to some interesting solutions 

in recent years (e.g., Bierkens et al., 2000; Verhoeye and DeWulf, 2002; Zhan et al., 2002; 

Tatem et al., 2003). Th is chapter focuses primarily on downscaling in remote sensing.

Several diff erent motivations exist for changing the spatial resolution. In a remote sensing 

context, it is frequently the case that imagery needs to be compared to ground data acquired 

in situ at the time of the sensor overpass. For example, the importance of calibrating remotely 

sensed images to absolute refl ectance units, particularly for multi-temporal analysis, is 

widely acknowledged. Image calibration can be achieved using physical (radiative transfer) 

modelling, but is more commonly achieved using methods such as vicarious calibration and 

empirical (regression-based) calibration (e.g., Karpouzli and Malthus, 2003). Such methods 

depend on in situ measurements of refl ectance of several homogeneous sites (targets) within 

the scene made using a fi eld spectroradiometer. Th e problem is that often the pixels of the 

image are much larger than the area sensed by the spectroradiometer. Th us, either the area 

of the ground measurements should be increased, or that of the pixels decreased, so that 

comparison can be made on areas that match.

A similar requirement for a change of spatial resolution arises in remote sensing when the 

objective is to predict some property of interest at the ground (e.g., land cover, biomass) from 

a remotely sensed image using empirical or semi-empirical methods ( Justice and Townshend, 

1981). For example, where some ground property (e.g., biomass) has been measured over a 

small fi nite area (e.g. 1 m by 1 m), and these measurements are to be regressed on co-located 

pixels of a remotely sensed image (e.g., with pixels of 30 m by 30 m) some kind of upscaling 

or downscaling should be attempted to allow sensible combination. Th e objective in these 

Downscaling

Upscaling

Coarse spatial resolution

Fine spatial resolution 62
30

Figure 4.1 – Two remotely sensed images defi ned with diff erent spatial resolutions illustrating the 

meaning of upscaling (reducing detail) and downscaling (increasing detail).
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circumstances (once a sensible regression model has been fi tted) is to apply the model to the 

whole image to allow prediction of the ground property spatially.

In a more general context, it is often necessary to change the spatial resolution of one image 

to allow comparison with another (Atkinson and Tate, 2000). For example, in a geographical 

information system (GIS) several useful operations require that diff erent data layers 

(variables) are represented on the same grid at the same spatial resolution (such that pixels 

from diff erent layers match perfectly). An obvious example is GIS overlay where several 

diff erent input data layers are combined via particular arithmetic or Boolean operations 

to produce an output data layer. Overlay is commonly used as the basis for site suitability 

analysis (e.g., Carver, 1991), landslide hazard zonation (e.g., Atkinson and Massari, 1998) and 

a variety of other common applications. In all of these, some method of changing the spatial 

resolution is commonly required.

Although beyond the present scope, an important additional class of problem arises in the 

handling of census data, known as the  modifi able unit area problem or  MAUP (Openshaw, 

1984). Changing the spatial resolution of census data is complicated by the fact that the areal 

units (e.g., enumeration areas) vary from place to place in their size, shape and orientation. 

Th e consequence is that statistical and geostatistical models should not be applied directly to 

such data without modifi cation (Atkinson and Martin, 1999).

Accepting that upscaling and downscaling are important requirements in modern remote 

sensing analysis, the question is ‘how can upscaling and downscaling be achieved?’. Th e 

answer lies in fi nding suitable models of (i) spatial variation (to allow use of the available 

spatial information (see fi rst paragraph)) and (ii) the relation between spatial variation and 

spatial resolution (see section 4.3). Th is chapter explores such models and how they can be 

used to inform upscaling and downscaling in remote sensing.

4.2 Scale in Remote Sensing

Much has been written about scale in a remote sensing context (Curran and Atkinson, 1998; 

Atkinson and Tate, 2000; Atkinson, 2001; Tate and Atkinson, 2001) and such detail will not 

be repeated here. However, a brief review is presented for the benefi t of the reader new to this 

fi eld and to establish a common language for subsequent reference.

.. Defi ning scale

 Scale is strictly the ratio between two sizes; usually the size of a representation (e.g., a map) 

and the actual size in reality (e.g., actual distance on the ground). However, for the purposes 

of this chapter, scale will be used simply to mean size (e.g., large scale investigation means a 

large investigation). Th is is the meaning used in everyday language. Having defi ned scale, it 

is most useful to distinguish between two kinds of scale: (i) scales of measurement and (ii) 

scales of variation. We shall now consider these in turn.
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.. Scales of measurement

Scales of measurement are implicit in the parameters of any spatial sampling strategy. Here, 

fi rst-order (e.g., support) and second-order (e.g., spatial resolution) scales of measurement are 

distinguished.

... Support and pixel size

Th e  support is the size, geometry and orientation of the space on which an observation or 

datum is defi ned. In a remotely sensed image, each observation is made on a support that is 

actually centre-weighted (fi gure 4.2). Th is centre-weighting is referred to as the point-spread 

function of the sensor (see Manslow and Nixon, 2002, for a detailed analysis). It means that 

variation at the centre of an observation contributes more to the recorded value than the 

perimeter. It also means that some variation from outside the pixel boundaries contributes 

such that the supports constituting an image actually overlap (fi gure 4.2).

Th e pixel, by contrast, is the area on the ground (usually square or rectangular) that an 

image observation is taken to represent (fi gure 4.2). Th us, when a remotely sensed data set is 

displayed on a computer the set of recorded values are attributed to a set of pixels to form an 

image. Th e pixel, defi ned in this sense, does not usually match the actual support.

... Spatial resolution and spatial extent

Th e support is one of several parameters of the overall sampling framework. Other 

parameters of interest are the sample size, n, the sampling scheme (e.g., random, systematic) 

and the sampling density. Th ese additional parameters determine two further scales of 

measurement of interest: the spatial resolution and spatial extent. Together, the spatial 

resolution and extent determine the upper and lower bounds on the frequencies of spatial 

variation that are detectable in data.

The area on the ground that
a pixel represents

The area on the ground that actually contributes
to the observed signal, that is, the support

W
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Figure 4.2 – Four pixels arranged as part of an image shown with the support of each individual 

observation. Th e supports, which overlap in this case, are diff erent to the pixels.



Resolution Manipulation and Sub-Pixel Mapping – 55

Th e spatial resolution depends on the interaction between two or more observations. Th us, 

it can be considered as a second-order parameter of the sampling framework. Importantly, 

the spatial resolution is a function of both the sampling interval (or sample spacing) between 

any two observations in a sample and the support. In turn, the spacing between a data pair 

is a function of the sampling scheme, and sampling density. Th us, for example, in a random 

sampling scheme, the spatial resolution varies locally. In a remotely sensed image, the support 

(approximated by the pixel) and the sample spacing are fi xed and approximately equal and, in 

any case, in constant proportion. Th us, the spatial resolution can be seen as a function of the 

support only. For this reason, the spatial resolution and the pixel size are used interchangeably 

in much of the remote sensing literature. However, it is important to be aware that in the 

general case, this is not so: for example, gridded point data have a spatial resolution, even 

though the support is zero.

In this chapter, in the context of change of  scale in remote sensing, the support or pixel size 

is the primary interest because the sample spacing and the spatial resolution change as a 

function of it.

.. Scales of spatial variation

Spatial data are a function of both ‘reality’ and the sampling framework (fi gure 4.3). 

Measurement always occurs over some positive fi nite space (the support) and never at a 

point: all measurements are essentially integrals of the underlying variation over the support. 

As a consequence, spatial variation exists in, and is detectable in, spatial data only. Spatial 

variation cannot be detected in ‘reality’ independent of measurement (fi gure 4.3). Th us, our 

interest is in spatial variation in spatial data that are a function of both some underlying 

variation (not known) and the sampling framework (known). Th is fundamental dependence 

of spatial variation on the sampling framework underpins our ability to change the scale of 

measurement (upscale and downscale) as described later in this chapter.

Woodcock and Stahler (1987) distinguish, for convenience, between the H-resolution and L-

resolution cases. H-resolution occurs when the spatial resolution is fi ne relative to either (i) 
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Figure 4.3 – Data are a function of reality and the sampling framework.
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the frequency of continuous spatial variation or (ii) the size distribution of land cover objects 

in a remotely sensed scene. L-resolution refers to the inverse case where the spatial resolution 

is coarse relative to the frequency of variation or size of objects. In the H-resolution case, 

continuous spatial variation (e.g., in woodland biomass) and objects (e.g. land cover features) 

are suffi  ciently resolved. In the L-resolution case, variation and objects are not suffi  ciently 

resolved leading to a loss of detail in the resulting image. Woodcock and Strahler’s system 

is useful because it highlights the dependence of scales of spatial variation on the sampling 

framework. However, to achieve a deeper understanding it is necessary to develop an 

appropriate model, and currently, that model is provided by  geostatistics.

In the next section, some of the basic models of geostatistics are introduced. Th e concepts 

described underpin several of the methods for upscaling and downscaling in remote sensing 

discussed in later sections.

4.3 Geostatistics

Introductions to geostatistics are provided by many texts (e.g., Isaaks and Srivastava, 1989; 

Goovaerts, 1997; Armstrong, 1998; Chiles and Delfi ner, 1999). A brief summary is provided 

here.

.. Th e RF model

A  Random Function (RF) is the spatial equivalent of a Random Variable (RV), where 

the inter-dependence between any two point locations is expressed as a function of lag 

(separating distance and direction) (Matheron, 1965, 1971; Journel and Huijbregts, 1978; 

Goovaerts, 1997; Chilès and Delfi ner, 1999). A realization of a RF is termed a  Regionalized 

Variable (ReV). In geostatistics, spatial data (e.g., a remotely sensed image) are modelled as a 

realization of a RF (Goovaerts, 1997).

In geostatistics, the analysis is usually restricted to cumulative distribution functions (cdfs) 

involving at most two locations at a time. Th us, the one- and two-point cdfs, the covariance 

function,  autocorrelation function and variogram describe RFs adequately for most 

applications (Goovaerts, 1997). Generally, only one realization (e.g., remotely sensed pixel) is 

available for a given location x0. Th us, to allow statistical inference, a stationary RF model is 

chosen. Th at is, the various two-point functions (e.g., variogram) are made invariant with x. 

In these circumstances, the variogram can be defi ned as depending only on the lag h:

 (4.1)(h) = – E [{Z (x) - Z (x + h)}2]
1

2

When the expected value m=E{Z(x)} exists and is independent of x (is invariant within a 

region V) and the  variogram exists and depends only on h, the RF is said to be intrinsically 

stationary (Myers, 1989).
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.. Variogram estimation and modelling

For continuous variables, such as biomass and leaf area index, the sample semivariance 

is defi ned as half the average squared diff erence between values separated by a given lag 

intervals hk:

 (4.2)(hk) = ––––––  [z (x ) - z (x  + h)]2, h  hk
1

2P(hk) =1

P(h)



with P(hk) the number of value pairs separated by h. Th e variogram may be estimated for 

several diff erent orientations to describe variation that may be anisotropic.

Th e sample variogram obtained from Equation 4.2 relates information at a set of discrete lags 

only. To use the variogram in geostatistics it is necessary to fi t a continuous mathematical 

model to the sample variogram. Th e model fi tted must be such as to ensure that all linear 

combinations of the RF result in non-negative variances. For the variogram, this property 

is referred to as conditional negative semi-defi niteness (CNSD). It is customary to select a 

model as a linear combination of base models that are known to be CNSD (McBratney and 

Webster, 1986; Webster and Oliver, 1990). Th ree such base models are given below:

(i) the nugget eff ect model:

 (4.3)g (h) = 
0

1

if h = 0

otherwise

(ii) the spherical model:

 (4.4)g (h) = 

if h = 0

otherwise

h

a
1.5 — - 0.5  —

1

h

a

3

(iii) the exponential model:

 (4.5)g (h) = 1 - exp  — 
-h

a

where a or r are the non-linear parameters (see fi gure 4.4). A model may be fi tted to the 

sample variogram either visually or by some automatic process such as weighted least squares 

(Cressie, 1991), that is, by minimizing:

WSS =  (hk) [ (hk) - (hk)]
2

k=1

K

ˆ  (4.6)

with weights (hk) inverse proportional to the estimation error of ˆ (hk). Sample variogram 

estimation and model fi tting is described in a remote sensing context by Curran (1988).
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Figure 4.4 – Examples of variogram models: (a) the spherical (plus nugget) model showing the 

structured (or sill) variance, c, the nugget variance, c0, and the range, a, (b) the exponential (plus 

nugget) model showing the sill variance, nugget variance and non-linear parameter, r (which is 

approximately one third of the eff ective range, a) and (c) a hypothetical nested model in which short-

range and long-range components are combined with a nugget component.
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.. Interpreting the modelled variogram

It is useful to consider what information the modelled variogram conveys about the spatial 

variation that it represents. Consider, for example, the parameters of an exponential model, 

without a nugget, fi tted to a sample variogram. Th e sill c of the exponential model relates 

information on the amount of variation present in region V. In fact, the sill estimates the a 

priori variance D2(v, ∞) of Z (that is the variance obtained on a support v within an infi nitely 

sized region). Th e non-linear parameter a or r of the model relates information on the scale of 

spatial variation (fi gure 4.4).

Th e variogram models described may be used singly or in positive linear combination. In 

particular, the nugget model is often fi tted together with a structured component (such as an 

exponential or spherical model) to represent a discontinuity at the origin. Th e nugget variance 

(the sill of the nugget component) represents unresolved variation that exists at a micro-

scale and measurement error, but it can also arise from uncertainty both in estimating the 

variogram and in fi tting the model at short lags (Atkinson, 1997a). When muliple structured 

components are fi tted the variation is said to be ‘nested’ (see Oliver, 2001 and fi gure 4.4).

.. Regularizing the variogram model

As implied in the introduction, observations are always obtained over a positive fi nite support 

v. As a consequence, the sample variogram is itself defi ned for a support or pixel of positive 

size. Further, the form of the spatial variation and the variogram depend on the support 

(fi gure 4.3). In the remainder of this section a model of regularization is described that allows 

one to change the support size and observe its eff ect on the variogram.

Let us defi ne a RV Zv(x0) as a function of (i) some underlying RF Z(y) defi ned on a punctual 

(or point) support y and (ii) a support of size v:

 (4.7)Zv (x0) = –––  Z (y)dy
v(x0)

1

|v|

with | | the area of integration. Th e relation between the punctual and regularized variograms 

at lag h is given by (Clark, 1977; Journel and Huijbregts, 1978; Jupp et al., 1988, 1989):

v (h) = (v, vh) - (v, v)- -  (4.8)

where -(v, vh) is the integral of (h) between two cells of size v whose centroids are separated 

by h:

 (4.9)(v, vh) = –––  (y, y') dydy' 
v vh

- 1

|v|2

where y covers a cell of size v and y' covers independently an equivalent cell at lag h away. 

Th e quantity - (v, v) is the integral of (h) within a cell of size v, written formally as:

 (4.10)(v, v) = –––  (y, y') dydy' 
v v

-   1

|v|2
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where y and y' now cover the same cell independently.

Given Equation 4.8 and a model for the punctual variogram it is possible to estimate the 

regularized variogram for any new support of size v. Th e regularized function is estimated 

through numerical approximation, by discretizing the new larger support into several points 

arranged on a regular grid.

Equation 4.8 provides the investigator with a useful tool for exploring the relation between 

the observed variation and the support. For example, it provides information on which to 

base a choice of pixel size for a given remote sensing investigation (Woodcock and Strahler, 

1987; Atkinson and Curran, 1997; Curran and Atkinson, 1999). Since no measurement is 

required except on the original support it amounts to scaling the model rather than the data. 

Equation 4.8 is important to understanding the eff ect of the support on the character of 

observed spatial variation and on the regularised variogram (Zhang et al., 1990).

.. Kriging

 Ordinary kriging (OK) is an extension of  simple kriging (SK) (see Goovaerts, 1997) to the 

case of an unknown mean. Since OK is usually performed within a local moving window 

or neighbourhood W(V) centred on the block or cell V to be predicted at location x0, OK 

involves a locally varying unknown mean m(x). Th e linear predictor Z (V(x0)) (abbreviated 

to Z (V)), for a support V that is larger than the quasi-point support of the data, is a linear 

combination of the =1, 2, ..., n(x0) RVs Z(xa) plus the constant and unknown local mean 

m(V) (Goovaerts, 1997):

 (4.11)Z (V) =  (V)Z (x ) +  1 -  (V)  m (V).ˆ
=1

n(x
0
)

=1

n(x
0
)

Th e unknown local mean drops out of Equation 4.11 when the weights sum to unity:

ZOK (V) =  (V)Z (x ) with  (V) = 1.
OK

=1

n(x
0
)

ˆ OK

=1

n(x
0
)

 (4.12)

Since the weights sum to unity the linear predictor is unbiased. Th e prediction variance is the 

expected value of the squared diff erence between Z OK(V) and Z(V):

E = E {[ZOK (V) - Z (V)]2}.
2

  (4.13)

Th is can be expressed as the minimum prediction variance or OK variance by

OK = 2     (V, x ) -           (x , x ) - (V, V)
OK

=1

n(x
0
)

-
=1

n(x
0
)

=1

n(x
0
)

OK OK -  (4.14)

where -(V, xa) is the integral semivariance between the block to be predicted and the sample 

point , (x , x ) is the semivariance between the sample points  and  (that is, all pairs of 

data locations) and -(V, V) is the average within-block semivariance obtained from equation 

4.10.
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For OK, where the mean is unknown, a  Lagrange parameter OK(V) is required. For an 

intrinsically stationary RF model, the OK system is then given as:

    (x , V) + OK (V) = (V, V)
OK

=1

n(x
0
)

- -  (4.15)

    (V) = 1
OK

=1

n(x
0
)

 (4.16)

Th e kriging prediction variance OK
2

 of equation 4.14 can also be expressed by:

OK =     (x , V) + OK (V) = (V, V).
OK

=1

n(x
0
)

-ˆ 2 -  (4.17)

Given this brief introduction to geostatistics, it is now possible to turn our attention to the 

actual process of changing the scale of measurement.

4.4 Changing the scale of measurement

Many circumstances arise, both in remote sensing and GIS, where it is necessary to change 

the scale of measurement. Some examples were given in the introduction. Recent attempts to 

develop methods suitable for changing the scale of measurement are explored in this section.

.. Upscaling

Upscaling is an increase in the size of  support (or corresponding decrease in the spatial 

resolution) (Bierkens et al., 2000). It is often required in remote sensing to relate quasi-point 

ground data (e.g., 1 m by 1 m support) to remotely sensed image pixels (e.g., 30 m by 30 

m). Upscaling in these circumstances would be applied to the ground data, changing their 

support from 1 m by 1 m to 30 m by 30 m to facilitate comparison with the image.

Th e method used to upscale depends on the spatial arrangement of the ground data; in 

particular, whether the data are arranged such as to allow natural averaging within the larger 

supports. If averaging is possible, then a value can be predicted for the larger support by 

either simple or weighted averaging of the 1 m by 1 m data (fi gure 4.5).

If the ground data do not allow averaging then one has several options. First, the value of a 1 

m by 1 m datum predicts the value for the 30 m by 30 m pixel that it falls within. Th e value is 

seen simply as an unbiased sample of the population (for the pixel or support to which it is 

to be compared). Interestingly, in this case where a single observation predicts a single pixel 

value, the prediction is unbiased. Th e problem in this case is the large uncertainty involved in 

prediction.

If the geostatistical technique of block kriging is used to make the prediction the actual value 

will not change, but the block kriging variance (Equation 4.17) will relate useful information 

on prediction uncertainty that accounts for the spatial position of the 1 m by 1 m value within 

the pixel. In practice, the kriging variance will be larger where ground observations are 

located towards the edge of the pixel.
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Block kriging provides a method for upscaling in the more likely circumstances where a 

spatial sample of ground data exists and the investigator wishes to use all the data to predict 

at several pixels (i.e., using data from both within and outside each larger pixel). In these 

circumstances,  block kriging is the interpolation method of choice: (i) kriging is optimal in 

the sense of minimum prediction variance (depending on the appropriateness of the model), 

(ii) kriging is unbiased and (iii) block kriging allows prediction over the larger supports 

automatically (Equation 4.12).

While block kriging should be chosen above non-statistical interpolation methods such 

as inverse-distance weighting, there are some problems, the most important and relevant 

of which is ‘smoothing’. Because data from outside the pixel are used to predict, the new 

support is artifi cially extended beyond the pixel leading to ‘over-regularization’ referred to as 

smoothing.

Smoothing is a problem because, as suggested above, upscaling is usually performed to allow 

comparison with a second variable. Smoothing alters the univariate character of the upscaled 

variable (in particular, a reduction in variance beyond that which occurs due to natural 

A

B

C
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Figure 4.5 – Th ree hypothetical situations in which a value for the larger support (grey) may be 

predicted by smaller supports (black): (a) linear averaging, (b) a single ground observation (if block 

kriging is used to predict, the block kriging variance will impart useful information on uncertainty), 

and (c) block kriging (where multiple ground data are available proximate to the predicted block).
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averaging over the support). As a consequence, the bivariate relation between the upscaled 

ground variable and remotely sensed image is also altered. Th is could mean, for example, that 

the parameters of a fi tted regression model might be biased. Affi  ne corrections for adjusting 

such parameters to account for smoothing have been proposed (Atkinson and Kelly, 1997: 

Atkinson and Tate, 2000).

.. Downscaling

Downscaling is interesting because it attempts the seemingly impossible: increasing the 

spatial resolution of an already acquired data set. It is well known that one cannot increase 

the information content of a data set by manipulation alone. Th us, downscaling techniques 

make use of the available information (e.g., multispectral data) to provide a representation at 

a fi ner spatial resolution that is acceptable in terms of several criteria.

Super-resolution is a term that has commonly previously been used for methods that attempt 

to increase the spatial resolution of imagery by combining several alternative images of the 

same scene (e.g., images acquired at diff erent dates). Th e spatial resolution is increased by 

taking advantage of the exclusive information provided by successive images (e.g., Pastina et 

al., 2003). Here, the term is used for methods that increase the spatial resolution of a classifi ed 

remotely sensed image above that of the input imagery given only a single image (in several 

wavebands).

Methods for super-resolution mapping can be divided into two classes each with diff erent 

objectives. In the fi rst class, the objective is to maximise the spatial correlation between sub-

pixels. Th is amounts to spatial clustering of the classes to which sub-pixels are assigned, and 

is applicable in the H-resolution case. In the second class, the objective is to match the spatial 

correlation between sub-pixels with some prior model (e.g., spatial covariance or variogram 

model). Th is objective is applicable in the L-resolution case.

Several methods of super-resolution classifi cation have been developed over the last few 

years, including some by researchers at the University of Southampton. In the following 

sections, a broad overview of these techniques is given.

... Sub-pixel classifi cation

Foody (1998) used an interpolation-based technique to map the boundary of a lake with sub-

pixel geometric precision. While visually appealing results were produced, the approach was 

under-constrained. Specifi cally, the predicted boundary between lake and not lake need not 

honour any prior model (e.g., pixel-level soft land cover proportions, if these are known). 

Further, the algorithm may be subject to eff ects such as smoothing which may aff ect the 

precision of the fi nal vector boundary.

Flack et al. (1994) developed a technique based on the Hough transform for, fi rst, detecting 

linear features in remotely sensed images of agricultural scenes and, second, unmixing the 

signal on either side of the boundary. Th e technique is suitable for application to linear 

features in unprocessed remotely sensed images. More recently, Aplin et al., (2001) developed 

a similar technique for converting the output from a per-pixel soft-classifi cation of land 
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cover into a per-parcel hard classifi cation. Ordnance Survey Land-line vector data were used 

to constrain the sub-pixel map.

Several authors have attempted super-resolution mapping directly from multispectral 

remotely sensed imagery. For example, in a series of papers, Schneider (1993, 1999) and 

Steinwendner et al. (1998) document a technique for sub-pixel mapping of linear features 

based on a 3 by 3 pixel kernel or moving window. Th e approach was extended to include 

neural network prediction of vector boundaries, but is restricted to remotely sensed images 

and the detection of linear features.

... Super-resolving a soft classifi cation

Soft classifi cation predicts the land cover class proportions within a pixel (where a hard 

classifi er would assign the whole pixel to a single class). However, the soft classifi er does not 

predict where within a given pixel the proportions occur. Atkinson (1997b) suggested super-

resolving the output from the soft classifi er.

Land cover classifi cation from remotely sensed imagery was originally performed using hard 

classifi cation in which a pixel is allocated to one class only (Th omas et al., 1987). However, 

many pixels in remotely sensed images represent more than one land cover class. Such ‘mixed 

pixels’ occur where the frequency of spatial variation in land cover is greater than the spatial 

resolution (Woodcock and Strahler’s (1987) L-resolution case). However, some pixels will be 

mixed even in the H-resolution case because they lie across the boundaries between scene 

‘objects’.

Mixed pixels led to the development of several approaches for soft classifi cation in which a 

pixel is allocated to all classes in varying proportions (Bezdek et al., 1984; Adams et al., 1985). 

Examples of techniques for soft classifi cation applied to remotely sensed imagery include the 

linear mixture model, (e.g., Foody and Cox, 1994; Garcia-Haro et al., 1996),  fuzzy c-means 

classifi cation, (e.g, Bezdek et al., 1984), feed-forward, back-propagation (FFBP) neural 

networks (Paola and Schowengerdt, 1995; Atkinson et al., 1997) and support vector machines 

(e.g., Brown et al., 1999).

All of the above techniques may be used to provide a soft classifi cation of land cover that is 

both more informative and potentially more accurate than the equivalent hard classifi cation. 

However, while the land cover proportions within each pixel may be predicted, the spatial 

location of each land cover class within each pixel is not. It would be useful to know where, 

within the pixel, each class is located spatially. Th at goal is the goal of super-resolution 

classifi cation.

Atkinson (1997b) applied some of the fundamental concepts underpinning geostatistics 

(e.g., spatial dependence, spatial correlation) to allow prediction at the sub-pixel scale. In 

particular, it was suggested that as a fi rst approximation, and with no prior knowledge, 

proximate sub-pixels should have a higher probability of being allocated to pixels of the same 

class than sub-pixels further apart. Th e method of super-resolution classifi cation proposed 

adjusted sub-pixel class allocations based on the proportions of each class found in pixels 

neighbouring the ‘current’ sub-pixel. Th e basic idea was to maximize the spatial correlation 
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between neighbouring sub-pixels under the constraint that the original pixel proportions 

were maintained (Atkinson, 1997b). Th is objective is reasonable where the land cover target of 

interest is larger than the pixels in the imagery (H-resolution).

Verhoeye and De Wulf (2002) attempted to allocate sub-pixel hard classes using a technique 

similar to the spectral mixture model. Th e pixel proportion constraints were built into the 

mixture model and a solution was achieved by least squares approximation. Th e linear 

solution allowed each sub-pixel class to be predicted based on pixel-level neighbouring 

information. However, this ‘mixing of scales’ led to linear artefacts in the fi nal map.

Zhan et al. (2002) implemented an inverse distance weighting algorithm to interpolate 

unknown sub-pixel classes from neighbouring pixel-level land cover proportions. Alternative 

schemes were proposed for locating the ‘point’ meant to represent the location of the 

neighbouring pixel. Specifi cally, the corners and the centres of the neighbouring pixels were 

used. However, scales were once again mixed.

... Hopfi eld neural network solution

Tatem et al. (2001a) developed a  Hopfi eld neural network (HNN) technique for super-

resolution classifi cation. A HNN is a fully connected recurrent network, and is used 

essentially as an optimization tool (Hopfi eld and Tank, 1985). It attempts to minimize an 

Energy function Eij(t), defi ned for pixel (i, j) at time (iteration) t, which is defi ned in terms of 

a goal Gij and constraint Cij, as follows:

Eij (t) = k1Gij + k2Cij + b  (4.18)

where, k1 and k2 and are weights and b is a bias. Th e HNN has been applied previously in 

remote sensing for feature tracking (e.g., Coté and Tatnall, 1997).

Th e goal was used to maximise the spatial correlation between sub-pixels whereas the 

constraint was used to maintain the original predicted class proportions at the pixel level. 

Th e HNN approached a solution iteratively by adjusting the actual values of the soft class 

proportions per-sub-pixel. Th e method is ideally suited to the H-resolution case where the 

objects of interest are much larger then the pixels. Initially, the HNN was designed to deal 

with the binary case (i.e., target on a background) (Tatem et al., 2001). However, the HNN 

was later extended to the multivariate case (i.e., land cover classifi cation) (Tatem et al., 

2001b).

In later research, the HNN technique was developed to match the spatial correlation between 

sub-pixels to some prior (variogram) model (Tatem et al., 2002). Specifi cally, the clustering 

goal was replaced by a seven-part goal (to match the variogram over the fi rst seven lags to 

those of a variogram obtained from training data). Th e objective was to reduce the overall 

error between the predicted and observed variograms obtained at the sub-pixel scale. Th e 

method is ideally suited to the L-resolution case where the objects to be resolved are smaller 

than or equal to the original pixels. Th e method was able to reproduce accurately the spatial 

character of the target image, and in many cases led to an increase in per-sub-pixel accuracy 
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Figure 4.6 – Super-resolution mapping of a linear feature: (a) test image, (b) image of proportions 

input to the optimization algorithm, (c) random initial allocation to sub-pixels, (d) solution after 

3 iterations, (e) solution after 6 iterations, (f ) solution after 9 iterations and (g) solution after 12 

iterations.
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compared to the soft classifi cation. Further, both the ‘clustering’ goal and the ‘matching’ goal 

can be run on diff erent classes simultaneously within the same image.

... Pixel-swapping solution

More recently, attention has been turned back to pixel-swapping type algorithms because 

they are conceptually and computationally simpler than their HNN counterpart. Two 

main algorithms have been developed. First, a simple pixel-swapping approach was used 

to achieve  super-resolution classifi cation in the H-resolution case. Th e algorithm was fi rst 

developed for the binary case (Atkinson, 2004a). Th e technique allows sub-pixel classes to be 

swapped within the same pixel only, thus, ensuring that the original soft class proportions are 

maintained exactly at the pixel level. Swaps are made between the most and least ‘attractive’ 

locations if they result in an increase in spatial correlation between sub-pixels. Some results 

for a simple linear feature are reproduced in fi gure 4.6. Th e method was extended to the 

multivariate case simply by running the basic binary algorithm once for each class for each 

pixel and iteration. In both cases, the algorithm is applicable only in the H-resolution case.

To deal with the L-resolution case a new method based on the two-point histogram 

was developed (Atkinson, 2004b). Th e two-point histogram is the full set of transition 

probabilities between a selected pixel and its neighbours at given lag vectors away. In remote 

sensing, it is equivalent to the grey-level co-occurrence matrix (Haralick et al., 1973). Th e 

variogram (or covariance function) was not used because it conveys only one half of the 

available information (i.e., the diff erence, but not direction), such that

A-to-B = B-to-A = diff erent

A-to-A = B-to-B = same

Given a random variable Z that can take one of k=1, ..., K outcomes (i.e., a categorical 

variable) the two-point histogram for a particular lag (distance and direction of separation) h 

is the set of all bivariate transition probabilities (Deutsch and Journel, 1998):

 (4.19)pk,k' (h) = Pr
Z(x)  category k,

Z(x + h)  category k'

independent of x, for all k, k' = 1, ..., K. Th e objective function corresponding to the two-point 

histogram control statistic is as follows:

 (4.20)O =       [pk,k'      (h) - pk,k'        (h)]2

h

K
training realization

K

k=1

K

k'=1

where p
training
k,k'  (h) are the target transition probabilities, for example, calculated from a training 

image and p
training
k,k'  (h) are the corresponding transition probabilities of the realization image 

(i.e., the current image being altered).

A  pixel-swapping algorithm was developed in which pixel swaps are retained if the objective 

function is approached and rejected otherwise. Th e method depends on obtaining the target 

two-point histogram from a training image. Th is is reasonable where, for example, a small 
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area is covered by a fi ne spatial resolution image (classifi ed) and the larger area of interest is 

covered by an image with a coarser spatial resolution.

... Continuous variables

Th e super-resolution methods described above are not applicable to the continuous case 

(e.g., prediction of biomass). However, recent research has shown that it is actually possible 

to use geostatistical kriging to downscale from block data (areal averages) to point data 

(Kyriakidis, 2004). Such a development is novel (previously only punctual and block kriging 

were demonstrated). Block-to-point prediction provides a linear solution to downscaling, 

meaning that a single unique solution is achieved in any given scenario and iteration is not 

required. Further, since the solution is general and can be applied to blocks of any size, shape 

and orientation, the method provides a potential solution to at least part of the MAUP. Th e 

problem is that the method depends on estimation of the point-to-point spatial covariance 

and this is, in practice, not possible (Atkinson, 1997a) not least because measured variables are 

ill-defi ned for a point support as discussed above.

4.5 Discussion

Given the nature of this chapter (a review), this discussion section is brief, focusing mainly on 

current research issues.

.. Applications

It should be obvious that downscaling is a valid objective in its own right: increasing the 

spatial resolution of any image may provide valuable information to the user. Th is is true in a 

broad variety of fi elds in which image analysis is important (e.g. medical imaging).

Downscaling also has potential application where (as with upscaling) the objective is 

to compare one variable (e.g. remotely sensed image) with another (e.g. ground data). 

Importantly, downscaling may allow comparison (e.g., calibration) to occur at the 

measurement scale that is most relevant to the investigator (i.e., the support of the ground 

measurement of the actual property of interest). Such calibration has not been conceivable 

previously. As an example, consider the problems inherent in calibrating MODIS imagery 

(spatial resolution of 250 m or 500 m) (e.g., Cohen et al., 2003). It is time consuming 

(and in some cases prohibitively diffi  cult) to measure ground properties over entire pixels. 

Downscaling might allow an informed comparison at the quasi-point scale (e.g., with point 

measurements of soil moisture, air temperature etc.).

.. Issues of generalization and accuracy

Most investigators feel instinctively that a fi ne spatial resolution is somehow ‘better’ 

than a coarse spatial resolution. Th us, investigators often expect prediction accuracy (e.g., 

classifi cation accuracy) to increase with spatial resolution. However, it has been known 

for over twenty years that, paradoxically, the inverse is often true ( Justice and Townshend, 

1981). Classifi cation accuracy often decreases because smaller pixels may resolve within-

class variation that leads to confusion between classes (e.g., revealing soil patches within 

a fi eld of cereals, where the investigator wishes the whole fi eld to be classifi ed as cereals). 



Resolution Manipulation and Sub-Pixel Mapping – 69

Th e question is ‘if more data lead to lower accuracy, what is the point of investing the extra 

eff ort?’. Th e answer is that while accuracy per-pixel may decrease, an increase in spatial 

resolution will, except in a few extreme cases, lead to an increase in spatial information (where 

‘spatial information’ is interchangeable with ‘spatial variation’, see Atkinson, 1995). Th us, the 

investigator has the opportunity to aggregate the data in knowledge-driven ways (e.g., per-

fi eld amalgamation), leading to a potential increase in accuracy (per-fi eld) (Aplin et al., 1999; 

Berberoglu et al., 2000).

Super-resolution techniques for processing the output from a soft classifi er, as described 

above, produce a hard classifi cation at the sub-pixel scale. For the H-resolution case, the 

accuracy of interest to their investigator is the geometric accuracy of the representation of the 

boundary between land cover objects. Th is accuracy can be assessed on a per-sub-pixel basis 

(e.g., root mean square error), but might be more appropriately measured in terms of the 

geometric displacement of the predicted vector boundary from the true boundary using GIS-

based techniques. Implicit in such an approach is the need to convert the data provided by 

the super-resolution technique to the object-based model. Th e per-sub-pixel accuracy of the 

super-resolution classifi cation should be greater than that achieved using the output of the 

soft classifi er alone (i.e., by subtracting the predicted land cover proportions per-sub-pixel 

from the known hard classes).

In the L-resolution case, per-sub-pixel and geometric measures of accuracy become less 

relevant because it is clear that with little or no pixel-to-pixel correlation there is little 

hope of increasing the per-sub-pixel accuracy above that achievable with a soft classifi er. 

Th e sub-pixel map achieved using spatial covariance ‘matching’ type algorithms is similar 

to geostatistical simulation in that reproducing the character of spatial variation takes 

precedence over per-sub-pixel prediction accuracy (Tatem et al., 2002). Such maps may 

have utility in a broad range of application that require realistic maps as input (e.g., dynamic 

simulation models). More research is required to investigate the range of possible realizations 

that can be achieved, for example, by selecting alternative random starting positions for 

algorithms such as the HNN.

.. Error and the PSF

Th e constraint of the HNN algorithm maintains as far as possible the original pixel-level 

land cover proportions predicted by a soft classifi er. Similarly, the pixel swapping algorithms 

described in section 4.2.4 currently do not allow swapping between pixels, thus, guaranteeing 

that the original proportions are maintained. Th ese strategies are sensible where the 

predictions made by the soft classifi er are perfect. However, in the presence of measurement 

error this strategy may be sub-optimal (Atkinson, 1997b). In particular, we know that soft 

classifi cation is rarely perfect (Congalton, 1991; Foody, 2002). To deal with this uncertainty, 

Tatem et al. (2003) modifi ed the HNN weights (k1 and k2), to eff ectively relax the proportion 

constraint.

Since the  point-spread function implies that some variation from neighbouring pixels 

contaminates the signal for the current pixel it may be desirable to allow some mixing or 

swapping of land cover between neighbouring pixels. Further research is required to model 
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the relation between the parameters of the PSF model and the amount of mixing (swapping) 

that is required.

.. Future research

Perhaps more fundamental than the above points is the requirement for a non-stationary 

approach to super-resolution mapping, both in relation to the HNN and the pixel-swapping 

algorithms. Currently, the variogram or  two-point histogram used as the objective function 

is stationary (i.e., the same across the entire image). However, it is clear that within an 

image the sub-pixel pattern of texture and context will vary locally from place to place. Th e 

problem is that the sub-pixel variogram (two-point histogram) is estimated from training 

data that do not share the same spatial reference system as the target image (if they did, the 

super-resolution mapping would be redundant). Th us, there exists no sub-pixel information 

on which to base a local modifi cation of the objective function. However, pixel-level data 

do exist in the soft classifi ed input to the super-resolution technique. To make use of that 

local information it is necessary to downscale the information using the inverse of the 

regularization Equation (4.8) or its equivalent. It should be possible to convolve the objective 

function locally and alter it iteratively such as to match the observed equivalent at the pixel-

scale. Th is is the subject of current research.

4.6 Conclusion

It is often necessary to change the spatial resolution of remotely sensed imagery or of 

ground data acquired in support of a remote sensing investigation as a precursor to further 

remote sensing analysis. For example, it is often necessary to fi t a remote sensing model (e.g., 

regression) to image pixels and ground data that are defi ned on quite diff erent supports. 

Upscaling and downscaling techniques provide a reasonable basis for making the comparison 

on the same support given original data defi ned on diff erent supports.

Th is chapter has focused on

1   Th e variogram regularization model

2  Techniques for upscaling and downscaling

3   Techniques for increasing the spatial resolution of a classifi cation

It is hoped that this chapter will act as a spur to other researchers to take this growing fi eld 

forward.



Chapter 5

Multiscale Object-Specifi c Analysis (MOSA):

An Integrative Approach for Multiscale 

Landscape Analysis

Geoff rey J. Hay & Danielle J. Marceau

5.1 Introduction

Landscapes are increasingly regarded as  complex systems composed of a large number of 

spatially heterogeneous components that interact in a non-linear way and exhibit emergence, 

self-organization and adaptive properties through time (Waldrop, 1992; Prigogine, 1997; Kay 

and Regier, 2000; Wu and Marceau, 2002). An important characteristic of complex systems 

is that their hierarchical structure is defi ned at diff erent critical levels of organization where 

interactions are stronger within levels than among levels, and where each level operates at 

relatively distinct temporal and spatial scales (Simon, 1962; Allen and Starr, 1982). Th erefore, 

scale is central to the realization of hierarchy and the organization of landscapes (Levin, 

1992).

In general terms, scale refers to the spatial dimensions at which entities, patterns and 

processes can be observed and measured. From an absolute perspective, scale corresponds to a 

standard system, such as cartographic scales and census units, used to partition geographical 

space into operational spatial units. From a relative framework, scale is a variable intrinsically 

linked to the entities under observation, and corresponds to one’s window of perception. 

Th us every scale reveals information specifi c to its level of observation (Marceau, 1999). As 

defi ned in landscape ecology, scale is composed of two fundamental parts: grain and extent. 

Grain refers to the smallest intervals in an observation set, while extent refers to the range 

over which observations at a particular grain are made (O’Neill and King, 1998). In remote 

sensing, scale corresponds to the spatial, spectral, temporal, and radiometric resolution of the 

sensor. Here the term spatial resolution is equivalent to grain, while extent represents the 

total area that an image covers. In this discussion, small scale refers to a small area, and large 

or coarse-scale represents a large area.

 Scale has been recognized as a key component for understanding the structure and the 

spatio-temporal dynamics of landscapes for more than fi fty years and has been the subject 

of an abundant literature (for a review, see Marceau, 1999). During this time, two principal 

challenges have been addressed, respectively known as the scale and scaling problem. Th e 

former refers to identifying the ‘natural’ or preferred scale(s) at which ecological patterns 
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and processes occur, while the later refers to deriving appropriate rules for transferring data 

or information across scales (Caldwell et al., 1993; Jarvis, 1995). Th eoretical frameworks, such 

as Hierarchy theory (Allen and Star, 1982; O’Neill et al., 1986) and the  Hierarchical patch 

dynamics paradigm (HPDP – Wu and Loucks, 1995) have been proposed to express the 

intricate relationship among pattern, process, and scale explicitly in the context of landscapes, 

and to provide an operational framework for scaling. Useful concepts such as scale domain 

and scale threshold have also been defi ned. A scale domain represents a segment of the scale 

spectrum where patterns do not change, or change monotonically with changes in scale, while 

a scale threshold defi nes the end or beginning of a scale domain (Meentemeyer, 1989).

More recently, another challenge that has been identifi ed as a mandatory requirement for 

deciphering the complexity of landscapes is referred to as  multiscale analysis. Th e rationale 

behind multiscale analysis is as follow. Since landscapes are known to exhibit distinctive 

spatial patterns associated to diff erent processes at diff erent scales, landscape analysis 

performed at a unique scale is doomed to be incomplete and misleading (Marceau et al., 

1994a; Hay et al., 1997; Wu et al., 2000). Furthermore, there is no way of defi ning a priori 

what are the appropriate scales associated to specifi c patterns. In addition, scaling requires 

obtaining information about the patterns (and processes) occurring at a range of scales in 

order to detect scale thresholds and derive adequate rules for the transfer of information 

through multiple scales. Th us, it is imperative to develop a multiscale approach that allows 

dominant patterns to emerge at their characteristic scales, with no a priori user knowledge, 

in order to obtain adequate and complete information about the vertical structure of the 

landscape.

Th e idea of multiscale analysis is not new. Wu et al. (2000) distinguish between two general 

approaches for multiscale analysis that have been developed and applied over the last four 

decades: the direct and indirect approaches. An indirect approach refers to the use of a dataset 

acquired or resampled at a series of discrete scales. An example is provided by Marceau et 

al. (1994a,b) who resampled high-resolution airborne data at diff erent resolutions to study 

the impact of scale and spatial aggregation on classifi cation accuracy results. Th e principal 

limitations of the indirect approach are that scales are arbitrarily chosen and do not represent 

the full vertical continuum of landscapes. Consequently, signifi cant patterns and processes 

can go undetected or erroneously identifi ed.

In contrast, the direct multiscale approach attempts to capture the dominant patterns as 

they emerge at specifi c scales from a unique dataset. A number of computational techniques 

developed to generate multiscale representations (Starck et al., 1998) can be associated to this 

group. Th ese include fractals (Mandelbrot, 1967), quadtrees (Klinger, 1971), spectral analysis 

(Platt and Denman, 1975), pyramids (Klinger and Dyer, 1976), wavelets (Daubechies, 1988), 

beamlets (Donoho and Huo, 2000), scale space (Lindeberg, 1994; Hay et al., 2002a), and 

 multiscale object-specifi c analysis (MOSA) (Hay, 2002; Hay et al., 2003).

Among these, the last method exhibits novel characteristics that are of signifi cant importance 

for multiscale landscape analysis:
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•   First,  MOSA has been developed for the particular spatial sampling context provided by 

remote sensing imagery. Remote sensing represents an unprecedented means to gather 

data at a wide range of spectral, spatial and temporal resolutions and can be judiciously 

used to address a number of challenges related to the scale issue (Marceau and Hay, 1999).

•   Second, this approach is based on an object-specifi c framework (Hay et al., 1997; 2001). 

Th is means that individual  image-objects rather than arbitrary spatial units are the basis 

for analysis and scaling. Image-objects are considered as perceptual entities that visually 

represent objects in an image that are composed of similar digital numbers/grey-tones, 

and which model real-world entities. Such an object-based approach off ers two main 

advantages. First, it reduces the eff ect of the  modifi able areal unit problem (MAUP). 

Th e  MAUP originates from the use of arbitrarily defi ned and modifi able spatial units 

used to acquire data over a geographical area (Openshaw, 1984). Examples are provided 

by remote sensing data (Marceau et al., 1994a; Marceau and Hay, 1999) and census data. 

Because these data do not explicitly correspond to geographical entities, but rather are 

an aggregation of the content of the spatial units, the value of the analysis results based 

upon them may not possess any validity independently of the units that are used. One 

way to overcome the MAUP is to focus the analysis on meaningful geographical entities 

(or objects) rather than arbitrary defi ned spatial units (Fotheringham and Wong, 1991). 

A second advantage of the object-specifi c approach is that it explicitly considers the 

hierarchical structure of the landscape by allowing the aggregation of smaller landscape 

components into the larger objects they are part of at their next scale of expression.

•   Finally, this object-specifi c framework satisfi es two major requirements for multiscale 

analysis (Hay et al., 2002a). First, the generation of datasets that represent a range of 

‘natural’ scales from which objects can be detected. And second, the delineation and 

identifi cation of individual objects as they evolve through scale.

In an eff ort to better understand complex landscape behavior through scale, we propose 

a multiscale approach that judiciously integrates ecological theory, remote sensing data, 

spatial modeling, and computer vision capabilities for the automatic delineation, evaluation, 

and visualization of dominant landscape objects through scale. Because there exists no 

single optimal scale for analyzing the myriad diff erent spatial characteristics of landscape 

components (Marceau et al., 1994 a, b; Hay et al., 1997), we suggest that an eff ective 

multiscale approach should be guided by the intrinsic scale of the varying sized, shaped, and 

spatially distributed ‘image-objects’ that compose a remote sensing scene, rather than a static 

(and often arbitrary) user-defi ned scale of analysis (Hay et al., 2001).

Th e objective of this paper is to present a detailed description of Multiscale Object-Specifi c 

Analysis (MOSA) as a novel integrative approach that reduces the eff ects of MAUP, and 

automatically delineates multiscale landscape structure from remote sensing imagery. In 

particular, we report on the implementation of a new object-specifi c analysis kernel and new 

methodology that signifi cantly improves the results of automatic object delineation using 

object-specifi c data and  marker-controlled segmentation (MCS).

Th is chapter is organized in the following manner. First, a description of the remote sensing 

dataset used for analysis is presented. Th is is followed by a detailed description of the three 

components of MOSA. We then provide a brief interpretation of the results obtained from 
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applying MOSA to the dataset, and conclude by discussing the benefi ts and limitations of 

this technique.

5.2 Methodology

Th e methodological framework developed in this study represents an integration of 

techniques and concepts ranging from Landscape Ecology and Computer Vision, to 

Geographic Information Science. As a result, a number of diff erent computer software 

programs were employed. Unless explicitly stated, all object-specifi c code was written by the 

fi rst author in IDL 5.6 (http://www.rsinc.com/idl), and marker-controlled segmentation code 

was written in Matlab 5.1 (http://www.mathwork.com).

.. Remote Sensing dataset

Th e remote sensing image used in this study is a 500 by 500 pixel sub-image of a 

panchromatic  IKONOS-2 (Geo) scene acquired in August 2001, over a highly fragmented 

agro-forested landscape in the Haut-St-Laurent region in south-west Quebec, in Canada 

(Figure 5.1). Th is site is composed of an agricultural matrix textured with forest patches of 

varying size and shape. Th ree land-use classes dominate the scene: Agriculture, Fallow land 

and Forest. In order to illustrate how image-objects evolve through scale over a relatively 

large extent (i.e., 2 km) while still maintaining a fi ne level of detail, the panchromatic image 

was resampled from its original 1 m spatial resolution to 4 m using the object-specifi c 

upscaling technique, which is considered a robust upscaling technique (Hay et al., 1997).

.. MOSA description

MOSA represents an integration of three principal methods: Object-Specifi c Analysis 

(OSA), Object-Specifi c Upscaling (OSU), and Marker Controlled Watershed Segmentation 

(MCS). In general terms, OSA is a multiscale approach that employs diff erent sized adaptive 

kernels to automatically defi ne unique spatial measures specifi c to the individual image-

objects composing a remote sensing scene (Hay et al., 1997, 2001). Th ese ‘object-specifi c’ 
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Figure 5.1 – Original panchromatic IKONOS dataset and location of the study area.
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spatial measures are then used in a weighting function to automatically upscale (OSU) the 

image to a coarser resolution by taking into account the spatial infl uence (i.e., area) of the 

image-objects composing the scene at the fi ner resolution. Because image-objects, rather than 

arbitrary pixels, are the basis for upscaling, the eff ects of the modifi able areal unit problem 

(MAUP) are reduced in the upscaled image. MCS is then applied to the newly upscaled 

data to automatically segment them into topologically discrete image-objects that strongly 

correspond to visual interpretation. Th e elegance of utilizing MCS as a feature detector is that 

it requires inputs that are automatically and explicitly met by OSA/OSU outputs. Details 

regarding each component and their interaction are provided in the following sections.

... Object-specifi c analysis (OSA)

Strahler et al. (1986) noted that in a remote sensing image, two fundamental resolution types 

exist:

1   Low-resolution (L-res): where pixels are larger than image-objects; thus, a single pixel 

represents an integration of many smaller image-objects;

2  High-resolution (H-res): where pixels are smaller than image-objects; consequently, a 

single image-object is composed of many individual pixels.2. 

In object-specifi c analysis, we are interested in defi ning the detailed spatial characteristics 

of individual image-objects. Consequently, an underlying premise of OSA is that all pixels 

within an image are exclusively considered high-resolution samples of the image-objects they 

model, even though, both high- and low-resolution (L-res) samples exist in a single image. 

Th is is because pixels represent the fundamental primitive from which all image-objects are 

generated. Th us individual pixels are required to defi ne the larger image-object(s) they are a 

part of.

OSA thresholds and heuristics

Hay et al. (1997) observed that when plotting the variance of grey-values generated by 

sampling image-objects within increasingly larger kernels, the resulting plots produced curves 

with distinct breaks, or ‘thresholds’ in variance as the analyzing kernel contacted the image-

object’s edges (for a more detailed discussion, see Hay et al., 2001). After many hundreds of 

experiments on diff erent sized, shaped and spatially arranged image-objects ranging from 

text, human faces, unique sized and shaped geometric shapes, to trees, roads and fi elds in 

H-res airborne imagery, it became apparent that the kernel size defi ned at these thresholds 

strongly corresponded to the known size (i.e., area) of specifi c image-objects. As a result, the 

shape of these variance curves was used to create a set of robust heuristics that defi ne the 

spatial extent (i.e., kernel area) where an individual pixel is spectrally related to the image-

object it is a part of. Rather than a single threshold value being used for all sizes of analyzing 

kernels, we have defi ned three robust threshold values that are representative of the pixel/

image-object relationship over of a specifi c range of scales. In fact, a single threshold value 

does not work for all scales, thus supporting the concept of scale domains.

Th e primary OSA heuristic is composed of three diff erent percentage values, each of which 

represents the diff erence in variance defi ned between two concurrent kernels over a specifi c 

range of kernel sizes. If the diff erence in variance between the two kernels is less than or 
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equal to the heuristic threshold value, processing is stopped. When a ‘threshold’ is reached, 

the corresponding mean, variance and area values are also recorded for the pixel under 

analysis within the specifi ed kernel. Th is object-specifi c process is then applied to all the 

remaining pixels within the original image (OI), resulting in the generation of corresponding 

Variance (VI), Area (AI), and Mean (MI) images. Th ese three images are referred to as the 

fi rst image-set (IS1) (i.e., V1, A1, M1), and this form of adaptive-kernel processing is referred to 

as object-specifi c analysis.

Th e variance image is essentially a gradient or edge image. Bright tones correspond to 

high variance values, thus the edge between two or more image-objects, while dark tones 

indicate low variance, or homogeneity, thus more ‘object-like’. Th e area image defi nes the 

spatial infl uence, i.e., the kernel area or number of pixels ‘spectrally related’ to the pixel 

under analysis. Dark tones represent small area values, which correspond to object centers, 

while bright tones represent large area values. Th e mean image is composed of an average of 

the H-res pixels that constitute part of individual objects assessed at their respective scales; 

thus the mean image is a model of what the scene looks like at the next level of (non-linear) 

multiscale analysis.

Th e OSA kernel

For simplicity and convenience, object-specifi c analysis was initially conducted using odd 

sized square kernels i.e., 3 by 3, 5 by 5, etc. (Hay, 1997). However, based on the relationship 

between 2D Gaussian fi lters and mammalian vision (Hay et al., 2002a), and the diagonal 

bias inherent to square kernels, a square approximation of a round kernel was developed and 

used (Hay et al., 2001). To further improve the sensitivity of this kernel for defi ning complex 

edges, two diff erent sized ‘round’ kernels are currently assessed within the same kernel 

diameter. For example, if the kernel size is 9 by 9, a square kernel consists of 81 pixels. In the 

current method, two ‘round’ kernels of diff erent total area are defi ned within the same (9 by 

9) window (Figure 5.2). Th e fi rst kernel is based on the number of pixels less than the kernel 

radius. Th is results in 49 pixels. Th e second kernel represents the number of pixels less than or 

equal to the kernel radius, resulting in 69 pixels (table 5.1). In both cases, each round kernel 

is centred in the square window, and the pixel being assessed is the centre pixel. Th us, in a 9 

by 9 window, the variance of the pixel grey-values is defi ned, then the threshold heuristic is 

evaluated based on the diff erence between the 49 pixel sample (in the fi rst round kernel) and 

the 69 samples (in the second round kernel), instead of the 81 samples that constitute the 
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Figure 5.2 – Two round kernels defi ned within a square window.
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entire square window. At the next scale of analysis (i.e., a kernel of 11 by 11 pixels) analysis 

is conducted on the diff erence between 81 and 97 pixels (table 5.1). Th is new fi lter set has 

resulted in improved sensitivity to object edges, faster processing as convolution is performed 

twice within a single window of the same size, and the minimization of the diagonal bias 

inherent to square kernels.

...  Object-specifi c upscaling (OSU)

Th e unique area values defi ned for each pixel by OSA are used as part of a weighting scheme 

to upscale an image to a coarser resolution. Th e resolution of the upscaled image can either 

be defi ned manually according to user requirements, or automatically by statistical properties 

of the objects composing the image. Because both of these upscaling forms take into account 

object-specifi c weights, they are referred to as object-specifi c upscaling. In the following 

section, we report on the automated method.

Th e OSU resampling heuristic

An important premise of OSA is that spatially dominant objects should have greater 

‘infl uence’ in the upscaled image than smaller objects. We intuitively recognize this attribute 

when we move away from a local scene. Smaller objects seem to disappear while larger 

objects persist. An explanation for this is partly found in Slater (1980). If an object is less 

than ¼   the size of the  instantaneous fi eld of view (IFOV) of the sensor, its infl uence in the 

corresponding pixel is equal to the  point spread function (PSF) of the sensor – which in 

modern sensors is typically very small. In simple terms, IFOV represents the ground area 

visible by a sensor at a specifi c time, and the PSF defi nes the spatial infl uence of a point of 

light resulting primarily from imperfections in the lens of the sensor (Duggin and Robinove, 

1990). Consequently, if the object of interest is less than ¼   the size of the smallest resolvable 

component in the scene, the sensor is unable to visually detect it. From an object-specifi c 

perspective, this translates as: if an image-object is composed of fewer pixels than the smallest 

kernel can discern, its spatial characteristics cannot be defi ned.

Since the ¼   resampling heuristic describes how the signal of real-world components are 

modelled by a sensor, we adopt it for automatically defi ning appropriate minimum upscale 

resolutions in the following manner:

upscale_res = pixel_size + (pixel_size · min_win · res_heur)  (5.1)

where:

•   upscale_res represents the length (i.e., diameter) of the square upscale kernel defi ned in 

pixel units that are equivalent to those of the original image;

Table 5.1 – Th e number of pixels taken into consideration within a square window and two round 

kernels.

Kernel diameter (Dpixels) 3 5 7 9 11

Circle (LT D/2) 5 13 29 49  81
Circle (LE D/2) 9 21 37 69  97
Square (D x D) 9 25 49 81  121
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•   pixel_size initially is the value 1, where it represents a single pixel in the original image 

(regardless of its spatial resolution);

•   min_window represents the smallest sized kernel. In the case of a square 3 by 3 kernel, this 

value is 3 (i.e., the square root of the total number of pixels in the kernel). However, in the 

new ‘round’ kernel, the smallest analyzing kernel is composed of fi ve pixels (that make a 

cross in a 3 by 3 window), consequently the min-window value equals the square root of 5 

(i.e., 50.5);

•   res_heur equals 0.25 (i.e., ¼  ) as previously discussed.

Based on Equation 5.1, the fi rst upscale_res equals 1.559 [i.e., 1 + (1 x 50.5 x 0.25)]. Th at is, each 

pixel in the fi rst upscale image has a grain equal to 1.559 pixels in the panchromatic image. 

Th is represents a spatial resolution of 6.24 m (i.e., 4 m x 1.559 pixels). Th e extent of the new 

upscale image is obtained by dividing the length of the original image (i.e., 500 pixels) by 

1.559, resulting in 321 pixels. Essentially, the upscale kernel is used as a mask to generate a 

weighted area value for each pixel in the following manner. Beginning at the origin, the 

upscale kernel is overlaid on the corresponding AI, and each area pixel (within the mask) is 

divided by the sum of all area pixels in the mask. Th is generates a fractional area weight that 

sums to one. Each area weight (in the mask) is multiplied by its corresponding original grey 

value, and then summed. Th is summed value represents the new area weighted upscale value 

that corresponds to the original pixels in the upscale mask. Th e non-overlapping upscale 

kernel is then applied to the remaining data resulting in a new upscale image. Th e placement 

of the upscale mask (i.e., beginning at the origin) is completely arbitrary and thus subject 

to the aggregation problem, however incorporating object-weighted values reduces this 

problem. Due to the discrete nature of pixels, it is not possible to create a kernel with 1.559 by 

1.559 pixels. In all cases window sizes are rounded up, thus 1.559 pixels becomes 2 pixels.

During heuristic development, it became apparent that over 90 of the image-objects within 

each image were assessed within relatively small kernels; however, the remaining 10 requires 

3-4 times the processing of the smaller kernels. In addition, the locations that required the 

most processing seldom, if ever, corresponded to recognizable image-objects. Since the 

upscaling algorithm is designed to be area weighted (based on kernel size), large area values, 

which corresponded to non-recognizable image-objects, would have more infl uence in the 

upscaled image. To remedy this, the upscaling weight is calculated (as defi ned above) but 

using an inverse area value i.e., (1.0/AreaI). Th us each upscale increment spatially biases 

recognizable image-objects.

To determine the upscale resolution for coarser scales, this process is iterated using upscale_

res as the new pixel_size. Consequently, the next upscale_res equals 2.43 [i.e., 1.559+(1.559 · 3 · 

0.25)]. Th at is, at the second upscale iteration, a single upscale pixel is now equivalent to 2.43 

pixels – with a spatial resolution of 9.72 m (i.e., 4 m 2.43 pixels), and an image extent of 206 

pixels. When applied for two more iterations, the resulting upscale resolution, and grain and 

extent of the upscaled images are defi ned in table 5.2.

Iterative OSA and OSU

Based on promising results from early research, Hay et al. (1997) recognized that the 

application of OSA/OSU rules revealed patterns that accurately correspond to the spatial 
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extent of objects at their next (coarser) scale. Th is led to the hypothesis that by continuously 

applying object-specifi c rules to the MI generated at each OSA iteration, new spatial 

patterns will emerge that represent dominant landscape objects, and that these patterns will 

correspond to real-world objects through a wide range of scales (Hay and Marceau, 1998).

To test this hypothesis, Hay et al. (2001) developed an iterative multiscale framework that 

represents a nested hierarchy of two image-sets (ISt), each of which possesses membership in 

a unique scale domain (SDn). Th ey recognized that there is often a range of scales between the 

end point of identifi able scale domains where certain image-objects exist and the point where 

new image-objects emerge at their next scale of expression (see Hay et al., 2001 for an in-

depth discussion). To exploit this information, the initial framework was modifi ed as follows 

(see Figure 5.3 for an overview): at the fi rst OSA iteration, every pixel is locally assessed 
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OI
Grain: 4.0 m2

Extent: 500 pixels2

U1
Grain: 6.24 m2

Extent: 321 pixels2

U2
Grain: 9.72 m2

Extent: 206 pixels2

U3
Grain: 15.16 m2

Extent: 132 pixels2

U4
Grain: 23.88 m2

Extent: 85 pixels2
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Figure 5.4 – A comparison of the original image (OI) and Upscale images (U1-4) through scale.
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within progressively larger kernels until a local maximum variance (OSAvmax) threshold is 

reached. When applied to the entire image, this process generates the fi rst image-set (i.e., V1, 

A1, M1) – as previously described. In the second iteration, each pixel in the newly generated 

M1 is locally assessed until a minimum variance (OSAvmin) threshold is reached (Figure 5.3). 

Th e resulting images become the second image-set (i.e., V2, A2, M2) where they represent the 

beginning scale of all newly emergent image-objects.

Recall that minimum variance indicates that pixels are very similar, thus the corresponding 

image structures are most ‘object-like’. As a result, odd-numbered OSA iterations defi ne 

scales that represent the spatial extent or ‘end’ of objects, while even-numbered OSA 

iterations defi ne the beginning scale of all newly emergent image-objects. Consequently, 

data within the even-numbered OSA iterations (i.e., IS2, 4, 6...) are selected for upscaling 

(OSU) as they contain the new image-objects we are interested in. For example, within 

IS2, OSU is applied to the newly generated Mean image (M2), resulting in a new Upscale 

image (U1) (Figure 5.3). U1 is then considered the new base image, and the entire OSA/OSU 

process is repeated on the new images, until the number of pixels composing them is too 

small for further processing (Figure 5.4). If upscaling were applied to the original IKONOS 

image several iterations further, we would eventually end up with the Upscale data set being 

represented by a single pixel with a 2000 m spatial resolution.

Th e result of this iterative object-specifi c analysis and upscaling approach is a nested 

hierarchy of image-sets (ISt), each composed of two VI, AI and MI that have membership in 

a unique scale domain (SDn), where n indicates the location of each scale domain within the 

nested hierarchy (Figure 5.5). Within each SDn, all images share the same grain and extent, 

and represent the result of multiscale analysis specifi c to the image-objects composing them. 

However, all images in a SDn have a coarser grain than those of the previous SDn-1 (due to 

Table 5.2 – Information for generating a scale domain set.

SDn ISt Components OSAt OSUn Upscale
Resolution
(OI pixels)

Grain
(m2)

Extent
(pixels2)

# Pixels

OI   1.0  4.0  500  250000
SD1 IS1 = V1, A1, M1  1   4.0  500  250000

IS2 = V2, A2, M2  2   4.0  500  250000
U1  1  1.559  6.24  321  103041

SD2 IS3 = V3, A3, M3  3   6.24  321  103041
IS4 = V4, A4, M4  4   6.24  321  103041
U2  2  2.430  9.72  206  42436

SD3 IS5 = V5, A5, M5  5   9.72  206  42436
IS6 = V6, A6, M6  6   9.72  206  42436
U3  3  3.789  15.16  132  17424

SD4 IS7 = V7, A7, M7  7   15.16  132  17424
IS8 = V8, A8, M8  8   15.16  132  17424
U4  4  5.907  23.88  85  7225

SD5 IS9 = V9, A9, M9  9   23.88  85  7225
IS10 = V10, A10, M10  10   23.88  85  7225
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Figure 5.5 – Variance (VI), Area (AI) and Mean (MI) images generated at each scale domain.
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upscaling), though they share the same extent (i.e., the same ground area) through all image-

sets. Th is eff ect is illustrated by the Upscale images in Figure 5.4. 

We note that instead of continuing to apply OSAvmax to the MI generated from each OSAvmin 

iteration (Figure 5.3), object-specifi c upscaling is fi rst applied to ensure that the initial image-

object heuristics maintain the same conditions for which they were originally designed, and 

to reduce unnecessary computation and data generation/storage. Th e combination of all SDn 

generated from a single image is referred to as a  scale domain set (table 5.2).

...  Marker-controlled segmentation (MCS)

Once OSA/OSU processing has been completed, and a multiscale dataset has been 

generated, MCS is used as a feature detector to automatically delineate and label individual 

image-objects as they evolve through scale. MCS is a watershed transformation technique 

that detects regional similarities as opposed to an edge-based technique that detects local 

changes (Beucher and Lantuéjoul, 1979; Meyer and Beucher, 1990). Th e key characteristics of 

this technique are the ability to reduce over-segmentation due to noise by placing markers or 

‘seeds’ in user-specifi ed areas, and to defi ne regions (i.e., image-objects) as closed contours.

Th e watershed transformation

Th e intuitive idea behind the  watershed transformation is borrowed from geography. 

Essentially a topographic surface is fl ooded with water and the resulting watersheds divide 

the surface by representing domains of attraction of rain falling over the region (Roerdink 

and Meijster, 2000). When applied to an image, bright pixels correspond to peaks, dark 

pixels correspond to valleys, and watersheds are defi ned as closed contours surrounding local 

minima (i.e., a local catchment basin). However, the standard watershed transformation is 

known to produce over-segmentation due to noise and not to real objects. Filtering could be 

applied to reduce over-segmentation but is often based on subjective decisions (i.e., fi lter type 

and size).

In an eff ort to resolve this over-segmentation problem, Meyer and Beucher (1990) introduced 

the concept of marker-controlled segmentation (MCS). In MCS, markers are intelligently 

used as spatial identifi ers (or ‘seed’) for unique regions/objects in the image. Th us, rather than 

defi ning watersheds at the location of noise, watersheds are only defi ned around specifi c 

markers. Typically, markers are individually defi ned and placed in the image by the user, or 

regional minima are automatically generated and used as markers. However, we note that 

(image) regional minima do not – by default – represent special object-like characteristics 

except in object-specifi c datasets.

Th e MCS procedure

Th e general procedure associated with MCS involves three steps. First, an edge detector is 

used to enhance intensity variations in an image. Th is type of detector is typically referred to 

as a ‘gradient operator’, and the resulting image is the ‘gradient image’ (GI). Second, a relevant 

marker set is obtained and applied to this gradient image. Th ird, watersheds are delineated 

from this combination of markers and edges.
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An integration of new object-specifi c and MCS methods

In recent studies that integrated OSA, OSU and MCS (Hall et al., 2003; Hall and Hay, 

2003), Variance images were used as gradient images, rather than haphazardly choosing 

a gradient operator and (static) kernel size from which to generate gradient images. Th en 

unique markers were generated for each scale domain by automatically defi ning regional 

minima in the corresponding Area images, as these datasets explicitly represent object-

specifi c information. Th e resulting markers where then ‘imbedded’ in the gradient image 

using a simple operator, and the Matlab watershed algorithm was applied. Each polygon in 

the resulting watershed images (WI) was then labeled with a value equal to the average of the 

corresponding MI pixels located within its perimeter.

While these recent results were signifi cantly better than haphazardly generating a gradient 

image and using the regional image minima as markers, we recognized that their was still 

a problem – at least visually – with over-segmentation, even if it was all object related. In a 

new eff ort to reduce over-segmentation, while producing watersheds that visually correspond 

well to image-objects, we have incorporated pre-processing of the object-specifi c data with 

a median fi lter, generated new gradient images instead of using the Variance images, and 

developed a more object-specifi c approach to automatically defi ne markers. In all cases, the 

new methods can be automatically implemented using data inputs that continue to be met by 

the Variance, Area and Mean images. Th ese methods are described in detail in the following 

sections.

Pre-processing with a median fi lter

A detailed visual inspection of each VI, AI, MI reveals that a signifi cant amount of salt and 

pepper (isolated high or low) pixel values exist in each image. As previously noted, these 

signals will lead to over-segmentation when the watershed transform is applied. Th us, a 3 by 3 

median fi lter is applied to each of the VI, AI, and MI, as well as the OI. All subsequent feature 

detection will be applied to these images (unless otherwise stated). Median fi ltering is a 

nonlinear operation that replaces each point with the median of the one- or two-dimensional 

neighborhood of a given width. It is similar to smoothing with a boxcar or average fi lter but 

preserves edges larger than the neighborhood, while simultaneously eff ectively reducing salt 

and pepper noise (Lim, 1990).

Recall that in OSA, we are interested in the spatial/spectral relationship between pixels and 

the image-objects they are a part of, thus no pre-processing or smoothing of the original 

image is performed. Consequently, the maximum H-res content is maintained in the 

OI. However, in the object delineation portion of MOSA, we are no longer interested in 

individual pixels, but rather unique pixel groups that represent specifi c image-objects. When 

we take this into consideration, along with the fact that the smallest object-specifi c kernel 

resides within a 3 by 3 pixel window, and that edges larger than this are preserved, median 

fi ltering is an excellent and eff ective approach for defi ning the spatially dominant pixel 

groups that make up the image-objects within each scale domain image.

Generating new gradient images

While a signifi cant amount of edge information visually exists in each  Variance image 

(fi gure 5.5), discretizing these edges for use as gradient images is not trivial due to their 
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representation by a wide range of grey-tones. Th erefore, rather than using the variance 

images as gradient images (GI), new gradient images are generated for each scale domain 

by subtracting the Mean image from the corresponding resolution Upscale image (UI) and 

defi ning the absolute value of the result. For the gradient images displayed in Figure 5.6, the 

following equations were used:

G2 = abs (O1 - M2)  (5.2)

G4 = abs (U1 - M4)  (5.3)

G6 = abs (U2 - M6)  (5.4)

G8 = abs (U3 - M8)  (5.5)

G10 = abs (U4 - M10)  (5.6)

Where G2, 4, 6, 8, 10 represent the newly generated Gradient images, abs represents the absolute 

value, OI represents the original IKONOS panchromatic image, M2, 4, 6, 8, 10 represent the 

newly generated Mean images, and U1-4 represent the newly generated Upscale images. All 

MCS processing is applied to the (new median fi ltered) datasets originally generated by 

OSA/OSU at their native grains and extents as defi ned in table 5.2.

Th is method for generating new gradient images is similar to the technique in mathematical 

morphology where external contours (i.e., object edges) can be created by defi ning the 

diff erence between the original and the dilated image. Other contours can also be created 

by the diff erence between the original and the eroded image, and the dilated and the eroded 

image (Haralick and Shapiro, 1992). However, in each of these cases, a fi xed sized structuring 

element must be defi ned for erosion and or dilation, which directly infl uences the shape of 

the resulting contours. In the case of OSA, each MI represents the result of a dynamically 

sized and shaped structuring element (i.e., the object-specifi c kernel) that is specifi c to the 

diff erent sized, shaped and spatially arranged image-objects within each scene. By using the 

absolute value, all diff erence, or changed values are represented by relatively large (i.e., bright) 

grey tones that exist within the tails of each GI histogram.

Image-object markers

Object markers are generated by combining regional minima from the corresponding 

variance and area images using a logical AND operation. More specifi cally, the regional 

minima algorithm (imregionalmin available in Matlab) is fi rst applied separately to the VI 

and AI of each SDn. In this algorithm, regional minima are connected components of pixels 

(i.e., 8-connected neighbors) with the same intensity value, whose external boundary pixels 

all have a value greater than this intensity value. Th e resulting dataset is a binary image, where 

values equal to one represent regional minima. Variance minima values represent areas of low 

heterogeneity that conceptually correspond to object centers. Area minima indicate that the 

object-heuristics for the pixel being assessed were met within a small analyzing kernel and 

also correspond to object centers. Based on an extensive visual analysis of the images in each 

SDn, it became evident that the local Area minima represent both image-object centers and 
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Figure 5.6 – Gradient (GI), Watershed (WI), and labeled Marker Controlled Segmentation (MCSI) 

images generated at each scale domain. Th e MCSI are overlaid on their corresponding Mean images 

to illustrate how well MCS works as a feature detector.
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the edges between two or more image-objects. Hay et al. (2001) refer to these edge locations 

as edge-objects. Th at is, both image-objects and edge-objects are typically composed of 

(relatively) small area values. Th us, exclusively using markers derived from Area minima – as 

done in earlier studies (Hall et al., 2003; Hall and Hay, 2003) – does not provide optimal 

results. Fortunately however, only image-objects are composed of both (relatively) small area, 

and (relatively) small variance values. Th us to ensure that image-objects, rather than edge-

objects are defi ned as markers, the AND logical operator is applied to the regional Area 

minima and the regional Variance minima datasets. Th is produces a combined binary marker 

dataset, where only identical values (i.e., ones) are defi ned.

In the case where a large (homogeneous) image-object exists within the image, OSA defi nes 

this object as being composed of relatively small area values. Th is is because even though the 

extent of the object is large, it is composed of pixels that are very similar (i.e., low internal 

variance), thus the object-specifi c heuristics are met within a relatively small kernel size. Th is 

is done so that computing time is not wasted trying to defi ne very large kernels composed 

of many small grain pixels. Instead the data are upscaled using an inverse area value (thus 

smaller areas i.e., objects are more heavily weighted as described in the OSU resampling 

heuristic section) and a more appropriate kernel grain is used to evaluate the persistent 

object(s) at the next scale.

Imbedded markers and watershed analysis

To defi ne individual image-objects, the new (combined) marker sets were ‘imbedded’ within 

the corresponding gradient image. More explicitly, the location of each marker set was 

defi ned within the appropriate gradient image using the Matlab imimposemin function. Th is 

function modifi es the intensity image using morphological reconstruction so the intensity 

image only has regional minima wherever the binary (marker) image is nonzero. Th e Matlab 

watershed algorithm (Vincent and Soille, 1991) was then applied to each ‘imbedded’ image. 

Th is resulted in the generation of 10 watershed images (WI), each containing ‘empty’ 

polygons (fi ve of which (W2, 4, 6, 8, 10) are overlaid on their corresponding scale domain MI and 

illustrated in Figure 5.6). Only the watershed boundaries (i.e., ‘catchment basins’) separating 

image-objects are generated by this algorithm.

Object labeling

Each pixel in the Mean images represents a member of a newly detected image-object. 

Since these images are generated from average values calculated within unique threshold 

kernels, they represent the dominant image structure defi ned at a specifi c spatial resolution 

within a unique  scale domain (Hay et al., 2001). Th erefore, each newly defi ned – though 

empty – watershed polygon is used as a mask to generate a value equal to the average of the 

corresponding MI pixels located within its perimeter. In essence, each watershed polygon 

now spatially represents the average grey-tone, and areal extent of a unique image-object. 

Th is step is referred to as object labeling and represents the automatic delineation of discrete 

multiscale objects in each of the fi ve scale domains. Th is procedure was also applied by Hall 

et al., (2003) and Hall and Hay (2003).
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5.3 Results

In this section, we briefl y describe a number of the images resulting from OSA, OSU, and 

MCS that are illustrated in Figures 5.4, 5.5 and 5.6. To make visual analysis possible, these 

images have been resampled to a common size, and where necessary, contrast stretched.

Figure 5.4 provides an overview of how the visual information and digital size of all images 

in the corresponding scale domains change with upscaling. Multiscale images are often 

illustrated in an oblique plan view, with the smallest image on the top, and the largest on 

the bottom where they form a pyramidal structure. In Figure 5.4, they are presented linearly 

scaled in a stair case pattern, so that their spatial dimensions provide a relative comparison of 

their changing size through scale. As the number of pixels composing the image at each new 

scale domain decreases, the grain of each pixel increases, while the extent remains constant 

(see table 5.2). Th rough scale, small features including roads, hedgerows, and farmhouses 

disappear while larger features persist, such as extensive forested areas and agricultural fi elds. 

Th is occurs irrespective of whether the features are represented by bright or dark tones. Th e 

spatial extent of each image-object is its key to persistence in MOSA. However, if diff erent 

neighboring image-objects are composed of similar grey-values, then through scale, these 

individuals merge. Th is is particularly evident in the dark-grey toned agricultural fi elds that 

surround the bright central (corn) fi eld. Th rough scale, the smaller hedgerows that separate 

the individual fi elds ‘disappear’ and the fi elds appear to merge together (see OSU2-3). Finally 

in U4, they become indistinguishable from the matrix.

In Figure 5.5 in each Variance image, bright areas (i.e., high variance) defi ne edges that 

represent the meeting of two or more image-objects, while dark areas (i.e., low variance) 

correspond to image-object interiors. In the Area images, bright values indicate that the 

pixel under analysis belongs to an object that is composed of many diff erent parts over a 

relatively large area – thus the large analyzing kernel. Th is typically occurs at an edge between 

two or more diff erent image-objects, while dark values represent a relatively small, more 

homogeneous area – thus more object like. In the Mean images, each pixel is a member 

of (thus an averaged value of ) a new image-object that exists over a wider extent than the 

individual pixel. Th us, each Mean image appears blurred or more diff use through scale.

In V2, fi elds are dark, which indicates that they are composed of similar (i.e., low variance) 

parts, while the bright linear features (edges) that surround them correspond to hedgerows, 

and roads. Th e spatially dominant forest is represented as a (light and dark) textured structure 

that visually corresponds to diff erences in stand density (including canopy gaps and large 

crown structures), species and age classes.

As we move through scale, fi elds that exhibited similar grey-tones in Figure 5.4, and that 

appeared homogeneous (i.e., dark) in V2 on Figure 5.5, become merged with their similar 

toned neighbors in V4, 6, 8, 10. Th is characteristic is apparent in M2, where the bright toned 

(corn) fi eld is also composed of a darker lower portion. Even though this fi eld appears 

relatively bright at a fi ne scale, through scale its darker lower section appears to merge with 

the darker neighboring fi elds (see the evolution in M4, 6, 8, 10), while the bright upper portion 
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of the fi eld appears through scale to merge with other bright fi elds that are located above and 

below it, even though they are some distance away (compare M2 with M8, 10).

In Figure 5.6, the gradient images have been histogram equalized to illustrate the changes 

resulting from subtracting each Mean image from its corresponding Upscaled image (refer to 

the Generating new gradient images section). Dark tones represent small diff erences between 

these two scenes, while bright tones represent large diff erences. By generating an absolute 

diff erence image, we are only able to detect whether or not change has occurred through 

scale, not the direction of change (i.e., if the change was in the MI or the OSUI).

Th e MCS Watershed Images illustrate how well the over-segmentation problem has been 

reduced by the new MCS methodology. Each image represents the polygonal results of MCS 

overlaid on their corresponding scale domain Mean image. Based on the complexity of these 

multiscale scenes, this methodology automatically delineates image-features that strongly 

correlate to image-objects as viewed by a human analyst. Th is visual correlation is stronger at 

fi ner scales (i.e., W2, 4, 6) than at coarser scales (i.e., W8, 10), due to the fact that at fi ner scales 

there are more markers. In addition, while the pre-processing of the data with a median 

fi lter removed many fi ne components from all the datasets, the generation of the marker 

sets for each scale domain (composed of AI and VI minima), represents an additional level 

of fi ltering that was not applied to the mean image nor the gradient images. Since the mean 

images are partially responsible for the generation of the gradient images, and the gradient 

images are an important component in the delineation of MCS watershed, there visually 

appears to be more image-objects, particularly in the coarser scale mean images than the 

overlaid watersheds delineate.

In each labeled MCS image, all image-objects are labeled with unique grey tone values 

derived from their corresponding MI within explicit boundaries (refer to the Object labeling 

section). Consequently, fewer and larger, more homogeneous polygons appear as scale 

increases. Th e polygon boundary that corresponds to the large bright corn fi eld in M2 appears 

to persist in scale through the full range of watershed and MCS images; however its tonal 

value changes through scale as it incorporates components from its neighbors. In the top left 

corner of MCS2, 4, 6, 8, the power-line right of way (displayed in G2 as a thick dark diagonal 

line) appears to persist from SD1-4, then merges with its surroundings at SD5. In MCS10 the 

large dominant grey polygon in the upper portion of the image visually corresponds to the 

forest that dominates the upper section of the scene.

In the MCS Watershed images and labeled MCS images, the polygon lines appear to 

increase in thickness through scale. Th is is because a single pixel at a coarser scale represents 

a larger grain than at a fi ner scale. Th us when resampled (for visual analysis) to a smaller 

common grain size, it will be composed of more, fi ner resolution pixels. In these images, the 

dominant (wedge shaped) road structure is visible as a dividing line between diff erent scene 

components in W2 and W4, but begins to disappear in the coarser scales. Th is is because the 

grain in SD3 (9.72 m2) is actually larger than the width of the individual gravel roads in the 

scene.
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It can also be observed that several watershed polygons are not empty, but instead are fi lled 

completely in black. Th is is because the markers and the watershed represent the exact same 

size. A workaround could be to invert the watershed image, and use erosion to remove all 

single pixel watershed boundaries leaving only the fi lled watersheds (which now equal one 

and are slightly smaller than the original watershed), then subtract this new image from 

the inverted pre-erosion image, resulting only in the contours of the (previously) fi lled 

watersheds. Th is new contour image would then be inverted (thus the center pixels of 

each ‘fi lled’ watershed now equals one), and added back to the original watershed image. 

Th us, watersheds fi lled with black (zero) values would now be equal to one, and the visual 

impression would be that all watershed polygons were now ‘empty’.

5.4 Discussion

Bottom-up and top-down scaling

Although OSA/OSU is designed as a bottom up approach to scaling, the way in which 

the datasets are generated, represents a fully decomposable scaling framework, similar (in 

principal) to the wavelet decomposition tree with its high and low resolution components 

(Starck et al., 1998). Th erefore, not only is it possible to create coarse scale representations 

from fi ne scale components, as illustrated herein, but conceptually it should be possible 

to take the fi nal MI (which in this case is generated at SD5) and in combination with the 

appropriate AI deconvolve the preceding MI (i.e., M10-1) back to the original IKONOS 

panchromatic input image (while allowing for minimal rounding error). 

Th erefore, we suggest that OSA/OSU provides not only a sound methodology for upscaling 

but that it also provides a pathway for downscaling (i.e., integrating image information from 

coarse scales to fi ner scales). Th us, it may be possible to take coarse scale data generated at 

regional scales i.e., the spatial pattern of trace gas fl uxes, or the spatial pattern of net primary 

productivity (NPP), that geographically correspond to an area over which OSA/OSU images 

have been generated, and to use the AI at each SDn to determine the location, and weight/

percentage of the coarse scale data to be down sampled. Th is assumes that the OSA/OSU 

images generated are based on suitable data from which the surrogate measure (i.e., NPP) 

can be generated at from fi ner scales.

Scale manifolds

OSA/OSU allows for discrete levels or SDn to been generated where each image in these sets 

has the same grain and extent; however, the size of the window used to determine the spatial 

characteristics of individual image-object in each image are of varying size. Th us, while it is 

simple to imagine how the images in Figures 5.4, 5.5 and 5.6 may be hierarchically layered 

upon each other in a manner similar to the ‘scaling ladder’ conceptualized in the HPDP (Wu, 

1999), the reality is that in object-specifi c analysis the ‘spaces’ between the rungs of the ladder 

– which represent the ‘optimum’ scale of analysis – are not equal. Instead, they are of varying 

size, dependent upon the spatial characteristics of the object under analysis. Consequently, 

there should be a separate ladder for each image-object through scale. If this were the case, 

then it would be more plausible to visualize the hierarchical levels as stacked 2.5 dimensional 

layers or manifolds as modelled by Hay et al., (2002b). In relation to the previous discussion 
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on scaling, these object-specifi c manifolds represent a spatial scaff old between image-objects 

at diff erent scales showing how components spatially evolve through scale. 

5.5 Conclusion

MOSA is an integration of Object-Specifi c Analysis (OSA), Object-Specifi c Upscaling 

(OSU), and Marker Controlled Watershed Segmentation (MCS). Th is non-linear framework 

for automatic multiscale scene generation and feature extraction allows dominant image-

objects to emerge at their respective scales, and requires no a priori scene information. In 

this paper, we have presented a detailed description of MOSA, provided new information on 

the OSA kernel, and discussed improved methods for using MCS as a feature detector. In 

summary, this framework also exhibits the following characteristics.

•   Object-specifi c analysis can be applied to any digital data regardless of whether it is 

considered high resolution (i.e., sub-meter <5 m), medium resolution (5-30 m) or low 

resolution (greater than 30 m). Th e ability to defi ne image-objects is dependent upon 

the relationship between the size of the image-objects composing a scene, the spatial 

resolution of the pixels that compose the image-objects, and the size/shape of the 

analyzing kernel. Th us, if coarse grain data are used (i.e., TM, MODIS, AVHRR), then 

the spatial characteristics of relatively coarse grain image-objects will be defi ned.

•   Th e underlying ideas and heuristics are conceptually simple, are based upon strong 

empirical evidence, and follow many concepts of Complex Systems and Hierarchy theory.

•   Th e OSA kernel represents a close approximation of an isotropic fi lter (i.e., a square 

approximation of a round kernel with no preferential orientation), thus reducing the 

diagonal bias common in square kernels. In addition, we have defi ned and incorporated 

three robust empirical scale-dependent threshold conditions that are representative of 

the pixel/image-object relationship over an explicit range of scales, thus supporting the 

concept of scale domains.

•   OSA/OSU allows for upscaling between objects and within an image hierarchy, where it 

incorporates a ‘generic’ point spread function in relation to object size for determining an 

appropriate upscale resolution for the next iteration of processing (Hay et al., 2001).

•   OSU takes into account the relationship between the pixel size and the image-objects 

from which the original OSA heuristics were developed. Th us at fi ne scales, results 

visually model known image-objects very well. Th erefore, a precedent exists on which to 

base results at coarser unverifi able image-scales.

•   OSU incorporates object-specifi c weights, thus minimizing the eff ects of the modifi able 

areal unit problem (MAUP).

•   Land-cover classifi cations have been shown to improve with the addition of object-

specifi c datasets as additional logic channels (Hall et al., 2003).

•   OSA/OSU has been statistically proven to produce better-upscaling results than cubic 

convolution, bilinear interpolation, nearest neighbour and non-overlapping averaging 

(Hay et al., 1997).

•   MCS is well documented in the literature, and watershed segmentation algorithms are 

commonly available in popular image processing packages.
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•   Decomposability is possible by mapping each OSA/OSU image to corresponding Mean 

and Area dataset; thus the ability exists for explicitly tracking information over scales in a 

bottom up, and top down approach.

•   One of the greatest limitations of the MOSA is that it has not yet been tested over a large 

number of diff erent landscapes, or by a signifi cant number of researchers. However, further 

testing and validation are underway. In addition, no commercial software is available and 

its object modeling is done empirically. Th us, the results of multiscale analysis require 

validation against fi eld data, which becomes diffi  cult if not impossible as scales become 

coarser.

•   While the incorporation of MCS into MOSA represents an elegant feature detection 

solution that capitalizes on the explicit object information inherent to the Variance, Area 

and Mean datasets, further refi nement of automatically defi ned marker sets is required 

– particularly for coarser scale delineation.

Currently there is no integrated topological solution in MOSA for hierarchically linking 

and querying delineated image-objects through scale; however, an extended goal of MOSA 

includes not only automated object-specifi c feature detection, but also the classifi cation 

(Hall et al., 2003) and linking of image-objects through scale (Hay et al., 2003). At present, 

we are developing a topological mechanism similar to that described by Hay et al., (2002b) 

for the linking and querying of dominant blobs (i.e., image-objects) though scale space. 

Once completed and implemented in MOSA, the spatial characteristics of individual 

image-objects can be assessed using spatial statistics and landscape metrics to evaluate how 

landscape components (i.e., image-objects) become fragmented and/or connected to each 

other through scale.
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Chapter 6 

Variogram Derived Image Texture for 

Classifying Remotely Sensed Images

Mario Chica-Olmo & Francisco Abarca-Hernández

6.1 Introduction

Geostatistical methodology has evolved considerably during the last few decades, since 

its beginning in the early 1970s, in which theory and practice have achieved a parallel and 

harmonious development. Th e main scientifi c advances made during this relatively short 

period have enabled a proliferation of geostatistical methods that have become more and 

more sophisticated and better suited to respond to new practical situations. From this 

viewpoint, it is striking how many, and how varied, are the scientifi c and technical fi elds 

in which these theoretical principles are being used to resolve complex problems related to 

estimation and/or simulation of spatial variables. Such problems arise from a wide spectrum 

of disciplines and fi elds of application such as geology, edaphology, forest management, 

environmental studies, oil and water resources, spatial economy, etc. Remote sensing also 

plays an important role in this activity, and since the pioneering studies that sought a link 

between geostatistical methods and satellite imagery (e.g. Curran, 1988) more and more 

research has been carried out to show the wide methodological variety of geostatistical 

applications in this fi eld of remotely sensed data analysis. Th ese applications form part of 

the digital processing of satellite image data, with a noticeable number of them applying 

variographic analysis to characterise the spatial variability of digital values. Another group of 

applications, no less important, are based on estimation methods for image integration and 

improvement of digital classifi cation results. Th e common start point for all these approaches 

is the assumption that the digital number registered in the image is a regionalised variable in 

the sense proposed by Matheron (1971), i.e. it is a variable that presents a spatial distribution 

and a spatial variability function defi ned by the  variogram. Today, this hypothesis is widely 

accepted for the spatial study of the spectral response of land cover classes, as represented in 

digital values of the image. Such broad-based acceptance has been gained on the basis of the 

satisfactory results obtained from numerous practical applications.

 Texture is a visual feature of the image that is of great interest in the fi eld of digital image 

processing, including satellite images. It represents tonal variations in the spatial domain 

and determines the overall visual smoothness and coarseness of image features (Lillesand 

& Kiefer, 1994). Texture provides important information about the arrangement of the 

objects and their spatial relationships within the image, which is a factor of great interest for 

photointerpretation and land cover classifi cation. A wide variety of methodologies have been 
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proposed for texture analysis; among them, perhaps, one of the best known is the study of 

the local variation of the image brightness, such as the variance operator described by Russ 

(1999). Th is idea of creating local texture variance operators can be exploited by studying 

the variogram function. In such a case, we would not be just considering a single statistical 

parameter, as is the local variance of data within a window, but the overall information that 

can be derived from this geostatistical function of spatial variability. Th is can be achieved 

because the variogram is a powerful tool to analyse the spatial variability of digital values 

at both global (whole image) and local (window) scales. Consequently, it seems logical to 

consider the variogram function as the starting point from which various geostatistical 

texture operators calculated in a local neighbourhood could be obtained, using diff erent types 

of variogram estimators.

Th e objectives of this work are to show the relation between the  variogram function and the 

textural aspect of remotely-sensed images, to quantify this relationship by means of diff erent 

variogram estimators and thus obtain texture images and, fi nally, to use this contextual 

information to improve the results of the remotely-sensed data classifi cation. Th e main 

problems encountered are described and aspects for further development are suggested.

6.2 Texture and variogram

Satellite images are a particular case especially well suited for visual characterization by 

means of texture operators. Some well-known examples such as categorization of crops, 

urban regions and other land uses show distinctive textures that the interpreter can easily 

recognize. It is widely accepted that texture is a descriptor of the visual characteristics of an 

image, such as the smoothness, roughness, symmetry, regularity, etc. Th at is why authors have 

always attempted to use the results of their practical work to arrive at a qualitative defi nition 

of the textural aspect of images. For example, Picket (1970) remarked that texture could be 

used to describe the variations in bidimensional matrices, while Dury (1987) defi ned it as the 

frequency of tone change and the ordering within an image. Hawkins (1970) argued that the 

textural aspect of an image depends on three fundamental aspects: 

a  A local pattern that is repeated over a region (image), of suffi  cient size in relation to the 

size of the pattern; 

b  Th is pattern corresponds to a non-random arrangement of elemental constituents (pixels) 

and 

c   Th ese constituents are uniform entities with approximately the same dimensions 

throughout the region. We fi nd that although the above qualitative descriptions of texture 

seem reasonable, they do not, in fact, enable us to determine a simple, universal measure of 

texture.

Grey value variations occur at a greater or lesser frequency and intensity within the image, 

depending on the nature of the land cover studied. For example, in a landscape modelled 

by the action of runoff  water, most of the high-frequency variations of digital values arise 

from a pattern of linear shapes caused by the eff ect of the fl uvial network. On the other 

hand, the variations in digital values due to changes in refl ectivity at the contact between 

diff erent types of land uses are characterised as being low-frequency features. Figures 6.1a-d 
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show some examples of the textural aspects provided by satellite images. Specifi cally, Figures 

6.1a,b represent two subscenes of the panchromatic band of a SPOT image with a spatial 

resolution of 10 m. Th e two regions present notably diff erent organisational aspects (texture) 

of grey values: the fi rst basically shows crop distributions, while the second reveals a region 

with smooth changes of relief and scant vegetation. Another example is that of the Synthetic 

Aperture Radar images in Figures 6.1c,d (with a spatial resolution of 6 m), which represents 

a hilly area with smooth relief, and a modern urban zone, respectively. Th e two images 

are readily photointerpreted because of the marked diff erences in their textural aspects. 

Th ese examples provide a good description of what is frequently found in satellite images, 

which contain regions characterised not so much by a unique value of brightness, but by a 

variation in brightness from one pixel to the next or within a small region. Th is is particularly 

important in satellite image photointerpretation, when visual examination of an image 

suggests that the basis for discriminating various structural regions (e.g. land uses) is a texture 

rather than the degree of brightness or even a particular colour.

It seems evident that all these descriptive features of texture have a strong loading of 

subjectivity and do not always have a precise physical meaning, which clearly complicates the 

6-1
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Figure 6.1 Some examples of digital images showing diff erent textural aspects, corresponding to 

SPOT panchromatic (a, b) and Synthetic Aperture Radar (SAR) subscenes (c, d).



96 – M. Chica-Olmo & F. Abarca-Hernández

analyst’s task of establishing a universal quantitative signifi cance for this term. However, it is 

also correct to consider that texture of an image is related to measures of the rate of local and/

or global spatial variation of grey values. In fact, in our case, a satellite image can be viewed, 

in terms of relief, as a terrain model where digital numbers represent elevations in each 

pixel of the image. In such a situation, it would be easy to consider a quantitative concept 

of texture as a measure of the roughness of the relief. Th us, it would be possible to defi ne 

diverse texture operators in order to obtain texture images, in which brightness represents 

the texture and where main regions may be distinguished and extracted according to their 

range of degrees of brightness. Many authors have established diverse operators in order to 

quantify the textural characteristics of images (Pratt, 1991; Russ, 1999). Basically, in image 

processing, three main groups of textural analysis methods can be distinguished: statistical, 

structural and spectral. Th e fi rst of these characterises texture by means of global or local 

statistical operators depending on the grey levels of the image. It is a broad fi eld, providing 

measures such as smoothness, roughness, regularity, symmetry, uniformity, etc. (e.g. histogram 

measures, run-lengths and co-occurrences of grey levels). Structural techniques deal with the 

spatial arrangement of the constituent parts within the image, and are based on measures of 

regularity of the spacing of parallel lines. Finally, spectral techniques are based on the Fourier 

transform and detect global periodicities by identifying characteristic spikes (frequencies).

Our interest lies in the group of statistical methods, particularly those that take into account 

the spatial relationships between pixels. Spatial statistical operators calculate the textural 

index over the whole image or in a local neighbourhood by means of moving windows that 

are displaced pixel by pixel. Th e value thus calculated in the window is assigned to the central 

pixel, using diff erent approaches such as local statistical parameters (Sun & Qin, 1993), 

 entropy (Haralick & Shanmugham, 1974), measures on the matrix of co-occurrence (Marceau 

et al., 1990; Carlson & Ebel, 1995; Molina & Chuvieco, 1996), and more recently by using 

geostatistical parameters based on the variogram function (St-Onge and Cavayas, 1995; Lark, 

1996; Carr, 1996; Chica-Olmo & Abarca, 2000). Th e present work is centred on the latter 

methodology, in which the variogram function is used as a textural descriptor of satellite 

images.

.. Th e variogram function as a textural descriptor

Texture, in a statistical sense, may be analysed in terms of the two essential characteristics 

of digital values: local or global variability and spatial correlation. Th e fi rst characteristic is 

closely related to the statistical dispersion, which is frequently analysed by calculating the 

variance (i.e. variance operator), a statistical measure of the dispersion of digital values with 

respect to the mean value, or the central pixel value, within a moving window (Woodcock 

& Harward, 1992). Th e second characteristic, spatial correlation, assumes that digital values 

are not completely randomly distributed within an image and, consequently, that there 

exists a spatial variability (or dependence) structure associated with each landcover class. In 

this sense, an important result was reached by Lark (1996), who showed that the amount 

of variability between pairs of pixels depends on their spatial relations and it can be used 

as a texture descriptor of each landcover class. Th is result leads directly to the use of the 

geostatistical approach for texture analysis, because it off ers the advantage that both aspects 

are jointly analysed, as discussed below.
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As remarked in the introduction, the basic hypothesis of the digital number of a remotely 

sensed image as a  regionalized variable is now widely accepted in practice (Curran, 1988; 

Atkinson, 1993; Chica-Olmo & Abarca, 1998, etc.). Th is variable interpreted as a function 

DN(x) provides the radiometric digital number DN of a pixel x spatially referenced by a 

geographic coordinate system or, simply, by raster coordinates of the image. Th us, the whole 

image is viewed as a particular regionalisation of the DN(x) function, characterized by both 

random and spatial correlation aspects related to the above mentioned texture components. 

Under the intrinsic geostatistical hypothesis, both aspects are studied through the variogram 

function expressed by the classical equation (Matheron, 1971):

 (6.1)(h) = – E {DN(x) - DN (x + h)}21
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Figure 6.2 – Variograms of digital number values of SPOT (a,b) and SAR (c,d) subscenes shown in 

fi gure 6.1.
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where (h) represents half of the mathematical expectation of the squared diff erences of pixel 

pair values at a distance h, i.e. semivariance; (h) is a vectorial function depending on the 

modulus and the angle of the distance vector h between the pixels (x+h) and x.

Th e use of this function in image processing has been widely accepted because it is a powerful 

tool for the analysis of the spatial autocorrelation of radiometric data and, more specifi cally, of 

the spatial variability structure (Ramstein and Raff y, 1989). Variogram applications are based 

on the classical steps of the calculation, modelling and interpretation of the experimental 

variogram. Computing the variogram function does not present any diffi  culty, given the 

raster structure of a satellite image, except that computing time may be lengthy, depending 

on the size of the image. Variogram modelling is a step required for most geostatistical 

applications, i.e. spatial estimation and simulation (Atkinson et al., 1994; Dungan et al., 1994). 

Finally, variogram interpretation is usually focussed on relating range and sill parameters (see 

also chapter 4 of Atkinson), the behaviour at the origin of the variogram (nugget eff ect) and 

spatial  anisotropy to the spatial distribution of the radiometric values. As noted above, texture 

is closely related to the spatial variability of grey values and consequently to the variogram. 

Th is relationship has been studied by diff erent authors (Lacaze et al., 1994; Lark, 1996; Carr, 

1996, etc), who consider the variogram a potentially useful descriptor of image texture and 

demonstrate its possibilities to identify multiscale spatial patterns. Miranda et al. (1998) 

found that each landcover class in an image presents a diff erent spatial variability pattern, 

i.e., a diff erent variogram. Consequently, this spatial pattern could be considered contextual 

information of interest for the digital classifi cation of landcover classes.

In order to facilitate comprehension of how the variogram function characterises the textural 

aspect of an image, a variographic analysis was carried out on the images shown in Figures 

6.1a-d. In the case of the SPOT subscenes, the omnidirectional variograms present very 

diff erent aspects (Figures 6.2a, b). Th e variogram for the area in which crops are cultivated 

presents rapid growth from the origin, which indicates a strong loss of correlation at short 

distances (approximately 100 m, the average size of the plots). On the contrary, the variogram 

for the area with a fl at relief presents a high degree of spatial continuity, characterised by the 

slow, gradual growth of the function, and by its much greater range. Obviously, this diff erent 

behaviour of variograms refl ects the textural diff erences clearly visible between the two 

images. In the example of the radar subscenes, the variograms were directionally calculated 

in the four principal directions (Figures 6.2c, d). In this case, we observe a notable geometric 

anisotropy of the variograms for the fi rst sector, due to the predominantly N-S orientation of 

the drainage network. On the contrary, the variograms for the urban area show no signifi cant 

anisotropy. Th e  spatial correlation synthesized in the range of the variogram is greater for 

the fi rst sector than for the second. Th is fact may be explained by the smooth variation in 

the brightness of the fi rst image, in contrast to the strong local variation in the brightness 

of the urban texture. In both cases, the experimental variograms were fi tted as the sum of 

two structures plus a nugget eff ect, the parameters of which are shown in Table 6.1. Th e fi rst 

structure is spherical and the second is exponential. Th e two spatial structures are associated 

with diff erent ‘frequencies’ of the regionalisation of the digital values. If these results are 

interpreted in the sense of the Fourier analysis, the nugget eff ect is associated with image 

noise, i.e. high-frequency component; the short-range spherical structure is associated with 

local variations, and the exponential structure with global-scale variations, i.e. low-frequency 
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component. Table 6.1 shows the important value of the nugget eff ect, representing intra-pixel 

variability, with weights in terms of global variance of almost 25 and 19 for the fi rst and 

second sectors, respectively. Due to the strong degree of spatial anisotropy in the fi rst sector, a 

geometric anisotropy factor of 0.4 was assumed for the second structure; in consequence, the 

range of the N-S direction is 2.5 times greater than that for the E-W direction. No anisotropy 

was detected in the fi rst structure. An isotropic variogram model was fi tted for the second 

sector, as there was no evidence of directional anisotropy in the experimental variograms. 

With respect to the analysis of the textural aspect, we should note the importance of the 

fi rst spherical structure, for which the ranges in the two sectors are similar, 19 m and 13 m 

respectively; nevertheless, in terms of the local variation of image brightness, the percentages 

of variance of this fi rst structure are very diff erent, with the second doubling the values of 

the fi rst, 28 and 58 respectively. Th is means that the textural aspects of the fi rst image are 

determined mainly by the long-range structure, while in the case of the second image, urban 

area, the texture is defi ned by the short-range structure. Th is experimental fi nding coincides 

with simple visual observation of the images.

Th e above examples show that the variogram is a highly useful function as a textural 

descriptor of satellite images. Th is tool enables us to characterise the textural aspect of 

an image, both in global terms and locally, using a set of  geostatistical texture operators 

capable of quantifying the ordering and change frequency of the digital values within a 

neighbourhood.

.. Geostatistical texture operators based on the variogram

One of the more commonly used texture operators in image processing is the variance in 

neighbourhood regions (Russ, 1999). Its calculation is simple using statistical procedures 

based on moving windows, from the sum of the squares of the diff erences between the grey 

value for each pixel belonging to the neighbourhood with respect to the mean value or the 

central pixel value. Th e end value can become quite large, and so the result is sometimes 

displayed as the mean value of the square root of this diff erence. For this purpose, the sum 

of squares is normalized by dividing by the number of pixels in the neighbourhood and then 

calculating the root-mean-square diff erence of the values. Like other texture operators, e.g. 

the range operator, the variance also responds to the variation of pixels in the region. It is less 

sensitive to the individual extreme pixel values and produces an image with less noise than 

does the range operator. Moreover, the variance responds to the boundaries between regions 

of diff erent brightnesses and is sometime used as an edge detector (Russ, op cit.).

Table 6.1 – Fitted variogram model coeffi  cients of the Synthetic Aperture Radar (SAR) subscenes 

(nugget and sill values x 106).

SAR
subscene

Nugget
(C0)

1st Structure 2nd Structure Dispersion (%)

Mod. Range 
(C1)

Sill (A1) Mod. Range 
(C2)

Sill
(A2)

C0/ 2 C1/ 2 C2/ 2

1 17.0 Sph. 18.8 19.8 Exp. 351.5 33.2 24.3 28.3 47.4
2 24.0 Sph. 13.0 74.0 Exp. 138.7 30.0 18.8 57.8 23.4
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Th e variogram can be considered a generalisation of the variance operator discussed above, as 

it is essentially a spatial function and not a simple statistical parameter. As a vector function 

it depends on the distance between the central pixel and the neighbourhood pixels of fi rst 

order, second order, etc.; moreover, it takes directional anisotropies into account. A further 

advantage of the variogram is that it can be calculated between pairs of radiometric bands, to 

describe the covariance between two bands of an image (cross-texture) and even between two 

bands of diff erent sensors (pseudo cross-texture).

Th e variogram provides a great many ways of characterising the textural aspect of an image. 

Th us, Chica-Olmo & Abarca (2000) proposed a set of geostatistical texture operators (GTO) 

based on the variogram, some of which consider the cross relations between pairs of bands. 

Specifi cally, the following functions may be used as simple and cross operators: simple 

variogram, madogram, rodogram, cross and pseudo-cross variogram (Chica-Olmo & Abarca, 

2000, Deutsch & Journel, 1992; Myers, 1991 and Wackernagel 1995).

i) Simple variogram (SV)

Th e statistical inference of the direct variogram is obtained from the estimator of equation 

(1):

 (6.2)k(h) = –––—  {DNk (xi) - DNk (xi + h)}21

2n(h)

n(h)

i=1

where n(h) is the number of distant pairs h, DN(.) are the digital values of pixels xi and xi+h, 

and k is the sensor band.

ii) Madogram (MA)

Th is is similar to the direct variogram but instead of square diff erences the absolute diff erence 

is taken (Deutsch & Journel, 1992). Th is function is equivalent to the fi rst-order variogram 

(Matheron, 1982):

 (6.3)k (h) = –––—  |DNk (xi) - DNk (xi + h)|
1

2n(h)

n(h)

i=1

iii) Rodogram (RO)

Th is is also similar to the direct variogram, but considers the square root of the absolute 

diff erence instead of squared diff erences:

 (6.4)k (h) = –––—   √|DNk (xi) - DNk (xi + h)|
1

2n(h)

n(h)

i=1

iv) Cross variogram (CV)

Th is is a bivariate function that quantifi es the joint spatial variability (cross correlation) 

between two bands. It is defi ned as half of the average product of the h-increments relative to 

the radiometric bands j, k:
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 (6.5)jk (h) = –––—   {DNj (xi) - DNj (xi + h)} · {DNk (xi) - DNk (xi + h)}
1

2n(h)

n(h)

i=1

v) Pseudo-cross variogram (PV)

Th is considers the variance of the cross increments instead of the covariance of the direct 

increments as above:

 (6.6)jk (h) = –––—   {DNj (xi) - DNk (xi + h)} · {DNj (xi) - DNk (xi + h)}
1

2n(h)

n(h)

i=1

Th e specifi c contribution of each type of variogram regarding the spatial pattern recognition 

in an image depends on each land cover studied, but is basically related to the meaning given 

by the above equations. Although all types of variogram are fairly similar, because all of them 

quantify the spatial variability of the digital values, nevertheless, there are some diff erences 

between them. Th ree are univariate functions and the other two are bivariate functions. In 

the univariate case, two functions use absolute diff erences (madogram and rodogram) and 

another is based on quadratic diff erences to highlight the texture contrast (simple variogram); 

they all provide an adequate representation of the observed spatial variability according 

to Carr (1996) and Miranda et al. (1998). Th e cross functions measure the variance of the 

diff erences between two radiometric bands (cross-variogram) and the variance of the cross 

diff erences of two radiometric bands (pseudo cross-variogram). Deutsch & Journel (1992) 

provide a more detailed description of measures of spatial variability based on the variogram 

of interest for elaborating new geostatistical operators for textural analysis.

Th ese texture operators are of considerable interest for applications of supervised digital 

classifi cation of images. Th is is illustrated by a geological example in which these spatial 

variability operators are used to construct synthetic images that represent the textural 

character of various lithologies outcropping in the study area.

6.3 Calculating geostatistical texture images

.. Using variogram-based texture operators

In a practical sense, any algorithm of texture operators must be easy to implement in the 

computer. In the case of variogram-based texture operators this is easily achieved, by means 

of simple algorithms designed to operate in moving windows, which assign the value derived 

to the central pixel. Th e process should consider aspects such as the number of sensor bands 

selected, the window size, the overlap between adjacent windows, the lag distance and 

direction(s) of the calculation, as is shown in Figure 6.3. Th us, a set of  geostatistical texture 

images (GTI) is obtained by computing geostatistical texture operators (GTO) within a 

neighbourhood using moving windows. Selection of the window size is a practical problem 

that must be resolved by empirical criteria. Previous experience has shown the convenience 

of obtaining a window size that is not too large (to limit computing time and to avoid the 

infl uence of the texture features of adjacent landcover classes) but not too small (otherwise 

a robust variogram estimator would not be obtained). Several trials with diff erent window 

sizes (e.g. 3 by 3, 5 by 5, 7 by 7 and 9 by 9 pixels) must be made for each particular case. Th e 
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variogram functions are calculated for each of these windows and for each one a single 

value is selected and assigned to the central pixel of the window. Concerning the specifi c 

lag h that should be used in calculating geostatistical texture images, there is no simple, 

general principle that can be applied. Assigning the values of these functions to the central 

pixel for only one lag distance might mean the application is not making maximum use of 

the available information, but it would be impractical to use all the possible values of the 

semivariances calculated in the moving window, due to factors such as the computing time 

and the similarity of values for closed semivariance lags. For instance, for a 7 by 7 window 

size, only 3 lags are available and probably lag h=1 is the most important because it is the one 

that best describes the radiometric diff erences in the immediate neighbourhood of the central 

pixel. Clearly, this aspect needs to be taken into account in order to optimise the information 

provided by the variogram estimators. Another interesting possibility is to use the variogram 

slope calculated from lags h = 1 and 2.

Another topic that must be considered is the use or otherwise of directional variograms. 

Th is option is signifi cant when the spatial distribution of DNs reveals anisotropy in the 

main directions (N-S, E-W, N45E, N45W) as shown in Figure 6.2. Nevertheless, the use of 

directional variograms would require a greater eff ort, given the number of possible directions 

and the number of types of variograms. For example, with the four main directions and the 

fi ve types of variogram, a set of 20 GTI would be obtained. In practice, the omnidirectional 

variogram could be applied, in particular when lag h=1 is used, because anisotropy is usually 

imperceptible for this lag.

Figures 6.4a-c show a set of geostatistical texture images corresponding to three diff erent 

estimators: simple variogram, cross-variogram and pseudo cross-variogram, calculated on the 

principal components PC1 and PC3 of a Landsat TM image. It is noticeable that each texture 

image shows a diff erent aspect related to the specifi c local spatial variability of the single or 

cross variables used.

62
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Figure 6.3 – Graphic interface of the computer program used for calculating geostatistical texture 

images based on the variogram function.
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.. Using the cross validation method

Another way to use the variogram function to produce texture images is by using the 

geostatistical technique of cross validation, based on the well-known method of ordinary 

 kriging (Matheron, 1971). Th e procedure is simple and consists of estimating the central pixel 

value in a window, DN(x0), from its neighbours DN(xi), with the peculiarity that the central 

pixel does not intervene in the estimation process. Th e procedure, based on a moving window, 

is repeated for all the pixels of the image producing as a result an image of the experimental 

or validation errors (as well as the theoretical errors). Th e main hypothesis is that the 

experimental error calculated (x)=[DN*(x)-DN(x)] is a textural measure of the image. Th is 

assumption seems justifi able, because an image with a homogeneous degree of brightness 

is better restored, that is, smaller experimental errors are produced and these have a lower 

degree of dispersion, than an image with marked local grey-level variations. Th e validation 

error refl ects the contrast between the experimental value of the central pixel and the most 

a) Simple variogram b) Cross variogram

c) Pseudo-cross variogram d) Cross validation
62
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Figure 6.4 – Some examples of geostatistical texture images (GTI) calculated from PC2 and PC3 

principal components of a Landsat TM image: a) simple variogram, b) cross variogram, c) pseudo-

cross variogram and d) cross validation method.
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probable value deduced from its neighbourhood (kriging estimator). Th e experimental error 

image (i.e. texture image) thus constructed depends on the spatial variability characteristics 

of the pixels (i.e. variogram function) and the estimation neighbourhood. Th e main statistical 

characteristic of the resulting image is a normal distribution with mean E[ (x)]=0 and 

variance E[ (x)]2= k
2
 (kriging error).

As stated above, the method uses the kriging estimator of the digital number in the pixel x, 

DN*(x), calculated as a linear combination of the n experimental values of the neighbourhood, 

DN*(x0)= iDNi(x). Th e weights i assigned to the neighbourhood values are optimally 

obtained by minimising the error variance. Th is aspect leads us to the kriging system as it is 

described by Atkinson in section 4.3.5 of chapter 4 (equation 4.15 and 4.16). As can be seen, 

an optimal joint use of the experimental information represented by the image DN(x) and 

the structural information provided by the variogram (h) is applied in the method. Figure 

6.4d shows an example of texture image obtained by cross validation, corresponding to the 

principal component PC2 of a TM Landsat image obtained from a neighbourhood of 3 by 3 

pixels.
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Figure 6.5 – Cluster analysis of a set of training areas based on geostatistical parameters deduced 

from variogram modelling of the radiometric bands of a Landsat TM image. Th e clustering shows 

an arrangement of the training sites in the main thematic classes.
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6.4 Using the variogram function in Remotely Sensed image 
classifi cation

We have seen how the variogram function is a powerful tool to analyse the local spatial 

variability of digital values in remotely sensed images. Th is function is used directly or 

indirectly (cross validation) to obtain texture images, which are of interest as contextual 

information to improve the results in supervised digital classifi cation. In this respect, it is 

interesting to note that the information contained in the variogram, can assist in the prior 

task of training area characterisation, helping to separate thematic classes before the digital 

classifi cation algorithm (e.g. the maximum-likelihood rule) is applied. Figure 6.5 illustrates 

this aspect with reference to a  land cover classifi cation study. Th e results are derived from a 

cluster analysis of a set of training areas corresponding to fi ve thematic classes. Th e variables 

used for the clustering are the parameters obtained exclusively from the variogram modelling 

step, i.e. nugget eff ect, slope at the origin and sill, corresponding to the radiometric bands 

of the Landsat TM sensor and to those transformed by  principal component analysis 

(PCA) of each training site. Looking these results we can conclude that thematic classes 

present diff erentiated spatial variability structures, which leads us to admit the possibility 

of a variographic characterisation of the training areas; indeed, this variability facilitates the 

identifi cation of some mixed classes. Consequently, it seems reasonable that this interesting 

information concerning the spatial variability, expressed in terms of texture images, in 

addition to the radiometric data, should improve the classifi cation results obtained.

.. An example of using geostatistical texture images in supervised digital 

classifi cation

Geological setting

Th e use of geostatistical texture images in supervised digital classifi cation is illustrated by the 

results of an application in a pilot area in the province of Almería (SE Spain). Th is is an area 

often used for mineral prospecting related to gold and lead-copper-zinc polymetallic sulphur 

deposits. In geomorphologic terms, the relief shape is conditioned by the structure and nature 

of the outcropping volcanic materials (domes, calderas and volcanic fl ow). Also characteristic 

are the fl atlands of Quaternary deposits, resulting from the erosion of these volcanic rocks in 

a Mediterranean, semi-arid climate. Th e volcanic outcrops in the area are mainly Neogene of 

a calco-alkaline nature, varying between andesites and rhyolites. Th e materials are aff ected, 

to a greater or lesser extent, by  hydrothermal alteration processes, favoured by the presence 

of fractures and fi ssures, associated with signifi cant mineralisations of gold and polymetallic 

sulphurs. Th e predominant volcanic rocks in this sector sometimes present similar mineral 

compositions, although the structural and textural aspect derived from the formation process 

is well diff erentiated; subvolcanic intrusions, ignimbrites, coladas and fl ows of volcanic 

material, domes, etc. Moreover, there are important outcrops of Tertiary materials, mainly 

comprising reef limestones and Quaternary deposits. In total, six lithologic classes were 

studied and are represented in the geologic map in Figure 6.6.

Radiometric information

A Landsat TM subscene obtained on 7 July 1991 was selected for the study, in which a 

target area sized 230 by 260 pixels (around 55 km2) was selected. Radiometric information 
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is constituted, basically, of the set of TM bands (the TM6 thermal band was discarded); in 

addition to these spectral data, a principal components analysis (PCA) was performed, in 

order to characterise and highlight the main spectral properties of the lithologic classes being 

studied. Th e new bands were obtained using the  Feature Oriented Principal Components 

Selection (FPCS) method proposed by Crosta & McMoore (1989). By this technique, the 

weights of the eigenvectors are examined to determine the principal components that are 

best related to the theoretical spectral data of the thematic classes studied, which in the 

present case are the lithologies.

Th e results of the principal component transformation of the TM bands did not 

unequivocally separate the geologic aspects of interest related to iron oxides and hydrothermal 

alteration (hydroxyl) and so, two groups of bands representative of the spectral information of 

the geologic aspects above referred were chosen. Th e TM1, TM3, TM4 and TM5 bands were 

used to analyse iron oxides and the TM3, TM4, TM5 and TM7 bands were used for the 

analysis of hydrothermal alteration minerals. Interpretation of the two groups of eigenvectors 

obtained from the calculation of the principal components was carried out separately (Table 

6.2). In each case, the fi rst component was interpreted as the albedo image, in which all the 

bands had a positive weight. In the fi rst group of bands, PC2 contrasted the ferrous minerals 

with a high weight of TM5 and the low one of TM4. PC3 contrasted the iron oxides with a 

high weight of TM1 and the low one of TM3. Th e second group of bands revealed spectral 

data on the alteration minerals. PC2 showed the contrast between the visible red and the near 

infrared, on the one hand, and the mid infrared on the other; it also highlighted the ferrous 

minerals with a high weight of TM5 and a low weight of TM4. In particular, PC3 with a 

high weight of TM7 and a low weight of TM5 contrasted the alteration minerals. In order 

to simplify the study, a representative component of each group, PC2 and PC3, respectively, 
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Figure 6.6 – Lithologic map of the study area. Please consult the enclosed CDROM for a full colour 

version.
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was selected to highlight the properties of interest of the geologic materials in the study area. 

Th us, in addition to the TM radiometric data, we had these two extra synthetic bands from 

which geostatistical texture images will be obtained.

Acquiring the texture images and performing discriminant analysis

Th e texture information deduced from the variogram was obtained following the above 

criteria described for TGO and the cross validation method for the PC2 and PC3 

components. In the fi rst case, a moving window of 7 by 7 pixels was used; this size produced 

the best results in the diff erent tests carried out. As a result, a set of texture images was 

obtained by assigning the following function values to the central pixel of the window: simple 

variogram (SV), madogram (MA), rodogram (RO), cross variogram (CV) and pseudo-cross 

variogram (PV). Because vector functions were used in every case, a lag of h=1 pixel (30 m) 

was arbitrarily selected as representative of the inter-pixel variation within the window, 

calculated as the mean value of the four principal directions (NS, EW, N45W and N45E).

For the two principal components, PC2 and PC3, a total of 8 texture images (6 simple 

variograms and 2 cross variograms) were obtained for each of the six lithologies. Th is 

number of complementary synthetic bands seems high, and they probably contain redundant 

information, especially in the univariate operators. Th e multivariate statistical technique of 

discriminant analysis is appropriate for analysing the most relevant texture images, with 

respect to the goal of digital classifi cation. For this purpose, discriminant analysis is applied 

to a group of randomly selected pixels in the training areas corresponding to the outcropping 

lithologic classes. In the present case, each pixel selected has a total of 14 variables: 6 TM 

bands and 8 textural measures of spatial variability. Th e results of the discriminant analysis 

shown in Table 6.3 reveal various interesting features. As expected, there is a marked increase 

in the percentage of accuracy classifi cation with the joint use of spectral information (TM 

bands) and texture information (GTI). Th e contribution of texture information in relative 

mean terms is around 33, but on occasion it reached 60. A surprising factor is the 

signifi cant weight of the cross variograms in the improvements observed, equivalent to the 

sum of the weights of the univariate functions (SV, MA and RO). Th is could be interpreted 

in the sense that these univariate functions transmit texture information that is similar, 

and therefore partially redundant. On the other hand, the use of combinations of texture 

operators was seen to double the precision of using just a single operator, with mean values 

of 45.7 and 20.8, respectively. Th is seems to indicate the existence of a certain synergy 

between texture images.

Table 6.2 – Principal Component Analysis of the two groups of TM bands used for mineral 

characterisation: a) iron oxide and b) hydroxyl. Th e eigenvector loading of the fi rst three components 

is shown.

(a) PC1 PC2 PC3 (b) PC1 PC2 PC3

TM1  0.404  -0.617  0.655 TM3  0.402  -0.681  0.277 
TM3  0.438  -0.349  -0.416 TM4  0.369  -0.482  -0.493
TM4  0.394  -0.188  -0.592 TM5  0.731  0.527  -0.327
TM5  0.700  0.680  0.217 TM7  0.409  0.163  0.757
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Supervised classifi cation

Th e above results were applied to perform a supervised classifi cation of the image, following 

the maximum-likelihood decision rule, expressed in the following equation (Erdas, 1997):

D = ln(ac) - [0.5 ln (|Covc|)] - [0.5 (X - Mc)
T (Covc  ) (X - Mc)]

-1
 (6.7)

where D is the weighted distance of a class, c is a particular class, X is the vector of measures 

of the candidate pixel, Mc is the mean of samples of class c, ac is the a priori probability that 

a pixel candidate will belong to class c, Covc is the matrix of covariance of the pixels in the 

sample from class c, |Covc| is the determinant of Covc, Covc
-1 is the inverse of Covc, ln is the 

natural logarithm, and T is the transposition function.

Th e aim of this classifi cation is to compare the results of standard classifi cation methods, 

using only the TM bands, with those in which texture information from GTI images is 

added. Two diff erent situations were considered: fi rstly, using a combination of the best 

texture operators, i.e. simple variogram (SV) and the madogram (MA) of the two principal 

components, and the cross variogram (CV) and the pseudo cross variogram (PV) between 

Table 6.3 – Results of discriminant analysis of the lithologic classifi cation adding variogram-based 

textural information (GTO) to the radiometric TM bands (SV, simple variogram; MA, madogram; 

RO, rodogram; CV, cross variogram and PV, pseudo-cross variogram).

Bands
combination

Number
of bands

accuracy (%) Bands combination Number 
of bands

accuracy (%)

Overall Relative Overall Relative

TM 6 41.0  – TM+SV+MA+RO  12 53.6 30.7
TM+SV 8 42.8  4.4 TM+ CV+PV  8 54.2 32.2
TM+MA 8 52.4  27.8 TM+CV+PV+MA  10 62.6 52.7
TM+RO 8 52.4  27.8 TM+CV+PV+RO  10 62.6 52.7
TM+CV 7 48.8  19.0 TM+CV+PV+SV+MA  12 65.7 60.3
TM+PV 7 51.2  25.0  

Table 6.4 – Results of supervised classifi cation in the training areas using: a) TM bands, b) TM 

bands and the best combination of geostatistical texture operators (GTO) and c) TM bands and 

cross validation method. Data show the percentage of pixels correctly classifi ed and the relative 

accuracy for each lithologic class.

Lithology TM (%) TM+GTO (%) Relative 
accuracy (%)

 TM+C_V (%) Relative 
Accuracy (%)

Anphibole dacite  72.2  94.8  31.3  89.2  23.5
Anphibole andesite  56.3  85.3  51.5  67.0  19.0
Rhyolite  87.1  90.5  3.9  95.5  9.6
Altered volcanic rocks 
(rhyolite and andesite)

 87.3  99.3  14.0  96.3  10.3

Reef limestone  77.1  90.7  17.6  91.7  18.9
Quaternary deposits  77.4  91.9  18.7  87.1  12.5
Average  75.6  91.9  22.8  87.8  15.6
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these principal components. In the second situation, the texture image obtained from the 

cross validation was used.

Th e supervision step was performed for 41 similarly-sized training areas for which ground-

truth data was recorded for the set of lithologic classes classifi ed. Th ese training areas were 

established in a fi eld reconnaissance campaign in which radiometric data (GER 2100 

spectroradiometer) and petrologic samples were gathered and analysed. Th e training areas, in 

total, represented 3 of the surface area studied.

a) TM data classification b) TM + GTO data classification

c) TM + cross validation data classification

62
30

Figure 6.7 – Classifi ed images of the study area: a) TM bands, b) TM bands and geostatistical 

texture operators and c) TM bands and cross validation method. Please consult the enclosed 

CDROM for a full colour version.
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Th e main results are shown in Figure 6.7a-c as classifi ed images and synthesised in Table 6.4, 

which shows the percentages of pixels correctly classifi ed in the training areas. A simple 

analysis of these results enables us to compare the standard classifi cation using the TM 

bands with that obtained by adding texture images, derived from the variogram and the cross 

validation. Th ese data show that the increase in the accuracy rate is very acceptable, as was 

foreseeable from the results of discriminant analysis. In the case of using variogram-based 

operators, GTO, the improvements in the classifi cation results varied depending on the 

lithologic type. Th e values ranged from an improvement of 51 for the amphibolic andesites 

to one of only 4 for the rhyolites, with a mean value of the improvement of about 23. 

Moreover, the textural information derived from cross validation improved the results of TM 

classifi cation, with a mean value for the whole group of lithologies of 16. In this case, also, 

the results depend on the lithologic classes.

6.5 Conclusions

Th e texture information obtained from satellite image processing is not only useful for 

interpreting the main features of the image, but also as contextual information for digital 

classifi cation purposes. Th e present contribution shows that geostatistical analysis of the 

spatial variability of satellite images provides signifi cant textural information that markedly 

improves the results of supervised digital classifi cation obtained by classical methods.

Geostatistical methods, by means of the variogram function, off er a wide range of possibilities 

to analyse the textural aspect of an image from the general viewpoint of the spatial variability 

of the digital values in moving windows. Both the variogram-based operators, TGO, and 

the cross validation method allow us to create texture images that, added to the data from 

radiometric bands, improve the results of supervised classifi cation. In this sense, the results 

clearly show the advantages of using texture images as contextual information to improve the 

results of supervised classifi cation. Th e average improvements are around 23 using TGO 

and 16 for the cross validation method. Th e diff erence between the two values may be due 

to the fact that, in the case of TGO, a group of 4 texture images were used, while only one 

was used in the cross validation case. Th e extreme values observed are surprising, and we 

assume they are due to the physical and textural characteristics of these outcropping rocks. 

Th e present results were found to be dependent on the image characteristics and, particularly, 

on the thematic classes studied. As for any experimental work, it would be advisable to 

test the validity of the present results by studying other areas with diff erent thematic and 

textural characteristics from those used in the present study. Th is aspect of thematic class 

dependence makes it diffi  cult to generalise on the extent to which the improvement in 

the results could be achieved in other studies. Nevertheless, what is predictable is that the 

results would be improved in those cases in which the thematic classes present diff erences 

in their spatial variability structures (variograms). Moreover, the applications must always be 

oriented, that is, the texture images should be obtained from the bands that are of greatest 

interest; alternatively, as in the example discussed, principal components should be used to 

obtain a better spectral characterisation of the thematic classes. In an operational context, 

during defi nition of the training areas, variographic analysis off ers excellent information 
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on the separability of the thematic classes and provides an initial evaluation of the spatial 

information that can be obtained from calculating the TGO operators.

Due to the quantity of texture images that can be obtained from the TGO, it is important 

to apply a prior discriminant analysis in order to evaluate the contribution of each of the 

TGO to class separability. Th us, it is a simple matter to select the operator or combination of 

operators of greatest interest for the supervised classifi cation phase.

Another aspect is evident in the results obtained: the supervised classifi cation shows that the 

incorporation of TGO into the classifi cation produces more homogeneous results than those 

obtained only from the radiometric values of the TM bands. Furthermore, cross validation, 

a method that is straightforward to apply, produces very interesting results; indeed, for some 

thematic classes, it improves on those obtained with TGO, although in general terms of the 

treated image, the results are inferior to those obtained with the TGO combination applied.

Finally, perhaps, one of the most rewarding features arising from this study is the usefulness 

of the cross textural operators, i.e. cross variogram and pseudo-cross variogram, based on 

using two diff erent types of information (bands). Th is aspect could open a new dimension in 

the texture analysis of multispectral satellite images, one of great interest that has yet to be 

investigated in depth.



Chapter 7

Merging Spectral and Textural Information for 

Classifying Remotely Sensed Images

Süha Berberoglu & Paul J. Curran

7.1 Introduction

Remotely sensed land cover information is used among other things to help

i   Understand relations between land cover and key environmental variables (Townshend, 

1992; Curran et al., 1997); 

ii  To enable modelling and prediction of environmental changes at the landscape scale 

(Anderson et al., 1976; Singh, 1989; Yuan et al., 1998); and 

iii To devise and monitor policies for sustainable use of the environment (Running et al., 

1995; Verstraete et al., 1996). 

However, the production and updating of land cover maps with remotely sensed data 

becomes problematic if the environment varies over a wide range of spatial frequencies (m to 

km) (De Jong & Burrough, 1995). A landscape with a variety of spatial frequencies results in 

a complex remotely sensed scene that an image at one spatial resolution is unable to capture. 

Fortunately, when using the more common types of satellite sensor imagery some of the 

unresolved spatial frequencies are coarser than those of the spatial resolution. Th erefore, 

where diff erent land cover classes are not spectrally separable in the remotely sensed data 

the accuracy of a land cover classifi cation may be increased through the use of spatial (i.e., 

textural) information (Berberoglu et al., 2000; De Jong et al., 2001).

Th e fi ner the spatial resolution of a remotely sensed image the greater the potential number 

of spatial frequencies within that image. Not surprisingly, therefore, the new sources of 

fi ne spatial resolution imagery have increased the amount of information attainable for the 

classifi cation of land cover at local and regional scales (Aplin et al., 1997). Satellite sensor 

imagery with spatial resolutions of around 1 m in panchromatic mode and around 4 m in 

multispectral mode are now available widely. Associated with this increase in available spatial 

resolution is, commonly, an increase in the internal variability that can be recorded within 

remotely sensed land cover parcels. Th is internal variability can lead to decrease in per-pixel 

classifi cation accuracy for spectral based classifi cation methods (Cushnie, 1987; Townshend, 

1992). As a result of this, traditional image classifi cation techniques will need modifi cation if 

they are to fully exploit the benefi ts of fi ne spatial resolution remotely sensed data.

Synergy between spatial variability (e.g., texture) and spectral brightness (e.g., tone) has great 

potential to overcome the problem of misclassifi cation of land cover in fi ne spatial resolution 
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imagery (Stein et al., 1998). Image texture can be derived using fi rst order measures (such 

as standard deviation, variance, mean), second and third order measures (such as the co-

occurrence matrix) and geostatistical measures (variogram) (table 7.1). In addition, it may 

be preferable to classify the spatial units comprising the scene (land cover parcels or fi elds) 

rather than the arbitrary spatial unit of a pixel.

Th e aim of this chapter is to investigate the utility of two groups of changes to traditional 

land cover classifi ers ( Maximum Likelihood (ML) and  Artifi cial Neural Networks (ANN)). 

First, the use (along with tone) of texture derived from both a co-occurrence matrix and 

geostatistics (such as the variogram and variance) and second, their application in both a per-

pixel and per-fi eld format.

7.2 Background

Haralick (1979) gives the following defi nition of texture ‘Image texture is described by the 

number and types of its primitives and the spatial organisation or layout of its primitives. Th e 

spatial organisation may be random, may have a pairwise dependence of one primitive on a 

neighbouring primitive, or may have a dependence of a primitive at a time. Th e dependence may 

be structural, probabilistic or functional’. For our purposes, texture is a measure of the spatial 

variation of digital image spectral brightness or digital number (DN). Th ere are many fi elds 

of image processing in which texture plays an important role, such as medical diagnostics 

(Gibson & Gaydeck, 1995), food science (Basset et al., 2000) and industrial pattern 

recognition ( James, 1987).

Textures can be divided into two types: deterministic and stochastic. Deterministic  texture 

is regular, (e.g., a mosaic) and the displacement of primitives can be described by rules. 

Stochastic texture is characterised by statistical measures or by texture models (Haralick, 

1979). Th e estimated coeffi  cients of these models are used as texture features as they give 

indication of roughness, smoothness or regularity of objects. Stochastic texture has long 

been used for the visual identifi cation of land cover types on aerial photographs (Kaiser, 

1955; Lark, 1996) and radar imagery (Kurvonen et al., 1992). However, stochastic texture with 

spectral brightness (tone) is used increasingly in the analysis of satellite sensor imagery (Shih 

& Schowengerdt, 1983; Lee & Philpot, 1991; Palubinskas et al., 1995; Ryherd & Woodcock, 

1996). To do this the output image generated by a texture measure (e.g., standard deviation 

of a pixel matrix) is incorporated as an additional band together with multispectral bands. 

Such an approach utilises only one of Rubin (1990) refer to as the three basic components of 

texture. Th e fi rst component is local contrast, the diff erence in brightness between adjacent 

light and dark areas: high local contrast has a rough texture and low local contrast has a 

smooth texture. Th e second component is size of the light and dark areas: coarse and fi ne 

are used to describe the size of these areas. Th e last component is the preferred orientation 

of the light and dark areas. If there is no preferred orientation and the light and dark areas 

are equidimensional, then the texture is isotropic but, if the areas are consistently longer 

in one direction than in another then the texture is anisotropic. Algorithms are available 

that can capture one, two or all components of image texture. When quantifying texture 

in remotely sensed imagery decisions are needed not only in relation to the algorithm, but 
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also the remotely sensed imagery, classifi er and quantisation level. In the following sections 

we will review traditional and more recent texture measures (variance, co-occurrence matrix, 

variogram) and combine these texture data with radiance data prior to classifying with ML 

and ANN in both per-pixel and per-fi eld formats.

7.3 Texture measures

Four groups of techniques have been used to extract textural information from remotely 

sensed images (table 7.1). We will use three in this chapter variance (fi rst order), co-occurrence 

matrix (second order) and the variogram.

Variance

Variance, the average squared deviation of a set of values around a mean, is an important 

descriptive statistic with many applications in inferential procedures. Th e formula for sample 

variance (s2) is as follows:

 (7.1)s2 = –––––––––
 (Xi - X )2

n-1

-

Th is is simple to calculate, does not require a large window but is sensitive to noise (e.g., 

erratic values).

Grey level co-occurrence matrix

Th is group of texture measures does not use a window of pixels rather, it uses on the co-

occurrence matrix (Haralick, 1979) to quantify textural variation (Sonka et al., 1993). It has 

been applied in several remote sensing applications (Connors et al., 1984; Argenti et al., 1990; 

Dreyer, 1993; Augusteijn et al., 1995; Dikshit, 1996; Bruzzone et al., 1997). Th e matrix records 

the number of pixels with a grey scale i which are separated from pixels with a grey scale 

j by a particular distance and direction. For an image I(x, y) (i.e., the grey-level set) and a 

transition vector =(a, b):

P (i, j) = P (I (x, y) = i, I (x + a, y + b) = j)  (7.2)

Th e estimation is made by counting all occurrences of such transitions in the image, and 

dividing it by the number of pixels in the image. Th us, it can provide a statistical description 

of the relation between neighbouring pixels, which is an advantage over fi rst order statistics 

(Sali & Wolfson, 1992). From these matrices fourteen features have been used for the 

quantifi cation of texture (Haralick et al., 1973). Six of the more commonly used texture 

measures derived from co-occurrence matrix were used here and these were selected on the 

basis of recommendations in the literature (Irons & Petersen, 1981; Dawson & Parsons, 1990; 

Dikshit, 1996; Wood, 1996; Kaminsky et al., 1997; Narasimha Rao et al., 2002) (table 7.2).

Where i, j are the grey levels of paired pixels and P(i, j) are the probabilities of co-occurrence. 

Th is (and the variance approach to texture quantifi cation) presents texture as a single value, so 



116 – S. Berberoglu & P.J. Curran

Te
xt

u
re

 m
ea

su
re

s 
in

 
re

m
o

te
 s

en
si

n
g

A
d

va
n

ta
g

es
D

is
ad

va
n

ta
g

es
R

ef
er

en
ce

s

Fi
rs

t 
o

rd
er

 s
ta

ti
st

ic
s

St
an

d
ar

d
 d

ev
ia

ti
o

n
, V

ar
ia

n
ce

.
• 

Si
m

p
le

 t
o

 c
al

cu
la

te
 

•
In

d
ic

at
es

 lo
ca

l v
ar

ia
n

ce
•

N
o

 d
ir

ec
ti

o
n

al
it

y 
(i

so
tr

o
p

y,
 

an
is

o
tr

o
p

y)
 •

 N
o

 d
is

ta
n

ce
 

fu
n

ct
io

n
 (

re
la

ti
o

n
 b

et
w

ee
n

 
d

if
fe

re
n

t 
p

ix
el

s)
 

•
Se

n
si

ti
ve

 t
o

 n
o

is
e

Fo
re

st
 m

ap
p

in
g

 (
A

ra
i, 

19
93

) 
Lo

ca
l v

ar
ia

n
ce

 a
t 

d
if

fe
re

n
t 

sp
at

ia
l r

es
o

lu
ti

o
n

s 
(W

o
o

d
co

ck
 &

 S
tr

ah
le

r, 
19

87
)

Se
co

n
d

 o
rd

er
 s

ta
ti

st
ic

s
C

o
-o

cc
u

rr
en

ce
 m

at
ri

x 
C

o
n

tr
as

t,
 A

n
g

u
la

r 
se

co
n

d
 

m
o

m
en

t,
 C

o
rr

el
at

io
n

, E
n

tr
o

p
y,

 
D

is
si

m
ila

ri
ty

, H
o

m
o

g
en

ei
ty

, S
u

m
 

av
er

ag
e,

 S
u

m
 v

ar
ia

n
ce

, S
u

m
 

en
tr

o
p

y,
 D

if
fe

re
n

ce
 v

ar
ia

n
ce

, 
D

if
fe

re
n

ce
 e

n
tr

o
p

y,
 In

fo
rm

at
io

n
 

m
ea

su
re

s 
o

f 
co

rr
el

at
io

n
, 

M
ax

im
u

m
 c

o
rr

el
at

io
n

 
co

ef
fi 

ci
en

t.

•
D

es
cr

ib
e 

re
la

ti
o

n
 b

et
w

ee
n

 
d

if
fe

re
n

t 
p

ix
el

s 
(r

eg
io

n
al

is
ed

 
va

ri
ab

le
s)

•
Se

n
si

ti
ve

 t
o

 d
ir

ec
ti

o
n

al
it

y 
•

In
se

n
si

ti
ve

 t
o

 n
o

is
e 

•
D

o
es

 n
o

t 
o

ve
r-

em
p

h
as

is
e 

fi 
el

d
 

b
o

u
n

d
ar

ie
s

•
C

o
m

p
u

ta
ti

o
n

al
ly

 in
te

n
si

ve
 

•
Si

m
ila

ri
ty

 a
m

o
n

g
 t

h
e 

st
at

is
ti

cs
 

d
er

iv
ed

 f
ro

m
 c

o
-o

cc
u

rr
en

ce
 

m
at

ri
x

In
tr

o
d

u
ct

io
n

 (
H

ar
al

ic
k 

et
 a

l.
, 1

97
3)

 
V

eg
et

at
io

n
 c

la
ss

ifi
 c

at
io

n
 (

D
ik

sh
it

, 1
99

6)
 

La
n

d
 c

o
ve

r 
m

ap
p

in
g

 (
M

ar
ce

au
 e

t 
al

.,
 1

99
0)

 
Fo

re
st

 r
eg

en
er

at
io

n
 (

Lu
ck

m
an

 e
t 

al
.,
 1

99
7)

G
eo

st
at

is
ti

cs
V

ar
io

g
ra

m
, C

o
rr

el
o

g
ra

m
, 

C
o

va
ri

an
ce

 f
u

n
ct

io
n

, G
en

er
al

 
re

la
ti

ve
 v

ar
io

g
ra

m
, R

o
d

o
g

ra
m

, 
M

ad
o

g
ra

m
, P

ai
rw

is
e 

re
la

ti
ve

 
va

ri
o

g
ra

m
.

•
Pr

o
vi

d
es

 d
if

fe
re

n
t 

sc
en

e 
m

ea
su

re
s 

(s
ill

, r
an

g
e,

 n
u

g
g

et
) 

• 
Se

n
si

ti
ve

 t
o

 d
ir

ec
ti

o
n

al
it

y 
•

In
se

n
si

ti
ve

 t
o

 n
o

is
e 

•
R

o
b

u
st

•
M

at
h

em
at

ic
al

ly
 s

im
p

le
 

•
U

n
d

er
ly

in
g

 a
ss

u
m

p
ti

o
n

s 
n

o
t 

ri
g

id
•

R
eq

u
ir

es
 m

ea
n

 b
e 

w
ea

kl
y 

st
at

io
n

ar
y 

• 
Ea

sy
 t

o
 in

te
rp

re
t

•
C

o
m

p
u

ta
ti

o
n

al
ly

 in
te

n
si

ve
 

•
La

rg
e 

d
at

a 
se

t 
re

q
u

ir
ed

 t
o

 
fi 

t 
a 

va
ri

o
g

ra
m

 m
o

d
el

 •
 O

n
e 

‘u
n

u
su

al
’ D

N
 v

al
u

e 
ca

u
se

s 
m

is
q

u
an

ti
fi 

ca
ti

o
n

 o
f 

al
l 

su
rr

o
u

n
d

in
g

 p
ix

el
s

R
ad

ar
 im

ag
e 

te
xt

u
re

 (
C

ar
r, 

19
96

; M
ir

an
d

a 
et

 a
l.

, 1
99

6,
 

R
u

b
in

, 1
99

0)
 

O
p

ti
ca

l i
m

ag
e 

te
xt

u
re

 (
D

e 
Jo

n
g

 &
 B

u
rr

o
u

g
h

, 1
99

5;
 H

ay
 

et
 a

l.
, 1

99
5)

Sp
ec

tr
al

/s
p

at
ia

l c
o

m
b

in
at

io
n

 (
V

an
 d

er
 M

ee
r, 

19
94

; 1
99

6)
 

B
io

m
as

s 
(A

tk
in

so
n

 &
 C

u
rr

an
, 1

99
5;

 D
u

n
g

an
, 1

99
5)

 
O

p
ti

m
u

m
 s

am
p

lin
g

 in
 im

ag
e 

d
at

a 
(A

tk
in

so
n

 &
 C

u
rr

an
, 

19
97

; R
am

st
ei

n
 &

 R
af

fy
, 1

98
9;

 V
an

 d
er

 M
ee

r, 
19

97
) 

O
p

ti
m

u
m

 s
am

p
lin

g
 in

 g
ro

u
n

d
 d

at
a 

(W
eb

st
er

 e
t 

al
.,
 1

98
9;

 
A

tk
in

so
n

, 1
99

5;
 H

ed
g

er
 e

t 
al

.,
 1

99
6;

 C
et

in
 &

 K
ir

d
a,

 
20

03
)

Fr
ac

ta
ls

•
U

ti
lis

es
 m

u
lt

i-
sp

at
ia

l r
es

o
lu

ti
o

n
 

d
at

a
•

C
an

 q
u

an
ti

fy
 r

o
u

g
h

n
es

s 
•

C
o

m
p

u
ta

ti
o

n
al

ly
 n

o
t 

in
te

n
si

ve
•

U
se

s 
sp

at
ia

l u
n

it
s 

la
rg

er
 t

h
an

 
p

ix
el

s

•
So

m
e 

m
et

h
o

d
s 

fo
r 

as
se

ss
in

g
 

fr
ac

ta
l d

im
en

si
o

n
 r

es
u

lt
 

lu
m

p
ed

 v
al

u
es

 f
o

r 
en

ti
re

 
im

ag
e 

ra
th

er
 t

h
an

 s
p

at
ia

l 
p

at
te

rn
.

•
N

o
is

e 
h

as
 s

ev
er

e 
ef

fe
ct

 o
n

 t
h

is
 

as
se

ss
m

en
t.

In
tr

o
d

u
ct

io
n

 (
B

u
rr

o
u

g
h

, 1
98

1)
V

eg
et

at
io

n
 a

n
d

 t
o

p
o

g
ra

p
h

y 
(B

ia
n

 &
 W

al
sh

, 1
99

3)
La

n
d

 d
eg

ra
d

at
io

n
 (

D
e 

Jo
n

g
 &

 B
u

rr
o

u
g

h
, 1

99
5)

Table 7.1 – Major texture analysis techniques used in remote sensing.
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ignoring important information contained in the spatial distribution of this texture. Another 

way of measuring texture that captures such spatial variation is geostatistics.

Variogram

Geostatistics ( Journel & Huijbregts, 1978; Goovaerts, 1997) provides a set of statistical tools 

for handling the spatial (and temporal) data. A key function of geostatistics is variogram 

which relates variance to spatial separation and provides a concise description of the scale 

and pattern of spatial variability.

In the Earth sciences many properties exhibit spatial dependence; the tendency for 

observations closes together in space to be more alike than those further apart (Curran 

& Atkinson, 1998). Th e variogram is computed by starting with a small value of distance 

(which is always equal to one pixel) that is increased incrementally in order to quantify the 

diff erences between data values as a function of separation distance. Th is separation distance, 

h, is called lag.

 (7.3)(h) = – E [{Z (x) - Z (x + h)}2]
1

2

Th e experimental (or sample) variogram is computed for the p(h) paired observations, z(xi), 

z(xi +h), i=1, 2, ..., p(h):

 (7.4)(h) = –––––  {zv (xi) - zv (xi + h)}21

2p (h)

p(h)

i=1
ˆ

where, v is the support (the size, geometry, orientation) of the area over which measurements 

are made. Th e variogram is now familiar in remote sensing (Curran, 1988, Woodcock 

et al., 1988a; Woodcock et al., 1988b; Curran & Atkinson, 1998; Herzfeld, 1999; Collins 

& Woodcock, 1999) and many detailed introductions to the variogram and associated 

geostatistical techniques are available (Isaaks & Srivastava, 1989). Typically, the shape of the 

variogram resembles one of three basic models (exponential, linear and spherical) and the 

coeffi  cients of these models may be used, for instance, in classifi cation or to inform sampling 

or mapping. Th e three important coeffi  cients to consider when interpreting the variogram 

(Curran, 1988; Woodcock et al., 1988a, b; Cohen et al., 1990) are given in fi gure 7.1.

Table 7.2 – Six texture measures derived from grey level co-occurrence matrix.

Texture measures derived 
from Co-occurrence Matrix

Formula

Contrast  |i - j|2 P (i, j)
i, j

Angular second moment  P 2 (i, j)
i, j

Correlation  [ijp (i, j) - x y] / x y
i, j

Entropy −  P  (i, j) log p (i, j)
i, j

Dissimilarity  [p (i, j)  |i - j|]
i, j

Homogeneity  [p (i, j) / 1 + (i - j)2]
i, j
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Th e nugget variance, c0, is the point at which the model crosses the ordinate or y-axis and is 

a measure of spatially-independent variation. Th e n structured components c1, ..., cn represent 

the spatially-dependant variation accounted for by each component of the model. Th e range, 

a, represents the limit of spatial dependence, the lag h at which semi-variance reaches its 

limit. Th e range can be used as a measure of spatial dependency, or homogeneity and it is 

related to the size of the objects in the scene and so is a textural measure of coarseness. 

Th e height of the variogram, the sill, is a measure of spatially-independent and spatially 

dependant variation for a given size of support and is related to the proportion of the area 

covered by objects, which is a function of their number, density and characteristic contrast 

between light and dark areas. Variograms for rough textures, have a higher sill than smooth 

textures and the average value of the semi-variance will deviate from the sill value when a 

new texture is encountered. Th e shape of a variogram is related to variability in the size of 

objects in the terrain. A more rounded or gradually sloping shape is characteristic of higher 

variance in the size of objects. Regularization (coarsening the spatial resolution) reduces the 

overall variance of the data, blurs fi ne scale variation (Atkinson, 1995), decreases sill height 

and increases the range and nugget variance.

Th e variogram within a moving window has been used to quantify texture in remotely sensed 

imagery (Miranda et al., 1992; Miranda & Carr, 1994; Miranda et al., 1996; Carr, 1996). For 

example, Miranda et al. (1992) used variograms to distinguish between diff erent land cover 

classes and increase the accuracy of land cover classifi cations and Carr (1996) used semi-

variance and spectral information (separately and in combination) within a supervised 

classifi cation to distinguish between land cover. Carr (1996), like other authors, observed 

that classifi cation accuracy was greater when semi-variance was used in combination with 

spectral information than when the latter was used alone. Another approach has been to use 

the square root of the diff erence between paired observations rather than the semi-variance 

(half the squared diff erence) for discriminating between land cover classes (Lark, 1996). 

Coeffi  cients of models fi tted to variograms have also been shown to be eff ective in identifying 

diff erent land cover classes (Cohen et al., 1990; Rubin, 1990). For example, Ramstein and 

Raff y (1989) found that range, a, was a useful land cover class descriptor. Using a similar 

approach Herzfeld & Higginson (1996) extracted several features from the variogram 

which related to seafl oor topographic form. Variograms can give complete mathematical 

range (a)

γ (h)

lag (h)

nugget (c0)

sill (c1)

62
30

Figure 7.1 – Spherical model fi tted to a typical variogram (with three of the more important 

coeffi  cients).
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descriptions of image texture. However, calculating numerous variograms for an entire image 

is computationally intensive and the variogram is a rather complex function which does not 

lend itself to simple, automated textural classifi cation of images.

7.4 Per-pixel vs per-fi eld approach to image classifi cation
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Figure 7.2 – Flowchart of per-fi eld majority rule and per-fi eld approaches (Berberoglu et al., 2000).
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Pixels, the basic spatial units within a remotely sensed data are as a consequence the basic 

spatial units for image classifi cation. However, extracting useful information from individual 

pixels can be inhibited by the contribution of signals from surrounded pixels (Townshend, 

1981) and within land cover variability (the result of soil background, vegetation phenology, 

atmospheric eff ects, sun and sensor geometry). As a result of this, the most representative 

spatial unit in the terrain is not a pixel but the land cover parcel, in this case a fi eld. Th e 

radiance of a fi eld is spatially variable and for reasons given above the radiance of individual 

pixels within the fi eld has little meaning. However, per-fi eld approaches utilise the average 

radiance and variability of that radiance, so providing a representative description of this 

primary unit in the terrain. Th e value of a per-fi eld approach in increasing classifi cation 

accuracy has been shown in several studies (Pedley & Curran, 1991; Lobo et al., 1996; Aplin 

et al., 1997). However, this accuracy can be increased even further by including a measure of 

spatial variability (e.g., texture) to the per-fi eld classifi cation (Curran & Ojedele 1988).

Agricultural land cover is spatially very varied, particularly so in the summer months. Th is 

wide range in spatial frequencies, from variability within fi elds to variability in fi eld size, can 

be utilised by land cover classifi ers. Th ere are two groups of per-fi eld approaches (fi gure 7.2):

1   Th e spatial variability can be quantifi ed using a textural measure and then combined with 

spectral data in a classifi er or

2  Th e spatial variability of the scene can be reduced by smoothing or removing within-fi eld 

variability (due to stoniness, drainage, etc.), through low-pass fi ltering or the use of a per-

fi eld classifi er.

Th e  per-fi eld classifi cation approach typically involves the integration of vector data and 

raster images within a geographical information system (GIS). Th e benefi ts of integrated 

approach are an increase in accuracy, a decrease in classifi cation time (because classifi ers are 

dealing with fi elds rather than many pixels) and a reduction in within-fi eld spectral mixing. 

However, the requirement for fi eld boundary information in the form of vector data has often 

restricted the use of a per-fi eld approach.

In this study the second approach was utilised as fi eld boundary information were available 

and as has been noted by Berberoglu et al. (2000) this second approach is likely to be the 

more accurate of the two.

7.5 Classifi cation algorithms

Of the many algorithms available for image classifi cation only two will be explored here: 

maximum likelihood (ML) and artifi cial neural network (ANN). An ML classifi er uses 

training data as a means of estimating means, variance, covariance and probabilities of 

classes. It assumes that the distribution of the data is Gaussian. Under this assumption, the 

distribution of the pattern can be described by the mean vector and the covariance matrix 

and used to compute the statistics of probability (Lillesand and Kiefer, 1994). However, the 

training data and the classes themselves may not display Gaussian frequency distribution. In 

such situations ANN is one of several artifi cial intelligence techniques that have been used 

for automatic image classifi cation as an alternative to conventional statistical technique. Th ere 
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are six ANN models; Hopfi eld networks, Hamming networks, Carpenter/Grossberg classifi er, 

Kohonen’s self-organising feature maps, single layer perceptron and multi-layer perceptron.

Th e multi-layer perceptron (Rumelhart et al., 1986) is the most commonly encountered ANN 

model in remote sensing (because of its successful generalisation capability) and is the model 

used in this study.

Th is type of ANN model consists of three or more layers which are generally interconnected 

to the previous and next layers, but there are no interconnections within a layer and each layer 

consists of processing elements called units or nodes (fi gure 7.3).

Th e fi rst layer is called the input layer and serves as a distribution structure for the data being 

presented to the network. It holds input values and distributes these values to all units in the 

next layer and so no processing is done in this layer. Th e input values can be spectral bands 

or additional information such as texture. Th e fi nal processing layer is called the output layer 

and in this case is land cover class. Layers in-between input and output layers are hidden 

layers and their number within the network is defi ned by user.

Supervised ANN classifi cation consists of two stages; training and testing. In supervised 

training values for pixels, are presented to the neural network, together with a known land 

cover class. Th e aim of network training is to build a model of the data generating process 

so that the network in the testing stage can generalise and predict outputs from inputs it has 

not seen before. Th ere are diff erent types of learning algorithms for training the network. Th e 

commonly used algorithm in remote sensing is the ‘back-propagation’ or ‘generalised delta 

rule’ (Rumelhart et al., 1986). Network weights are adjusted to minimise an error based on 

a measure of the diff erence between desired and actual feed-forward network output. Th e 

interconnections between each unit have an associated weight. Each processing unit sums 

the values of its inputs. Th is sum is then passed through an arbitrary activation function to 

produce the unit’s output value. Formally, the input that a single unit receives is weighted 

according to

62
30

Figure 7.3 – Artifi cial Neural Network architecture (numbers below the nodes indicate weight and 

are unitless).
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netj =  jioi  (7.5)

where, ji represent the weights between unit i and unit j and i, oi is the output from unit i. 

Th e output from a given unit j is then computed from:

oi = f  (netj).  (7.6)

Th e function  is usually a non-linear sigmoid function that is applied to the weighted sum 

of inputs before the signal passes to the next layer (Beale & Jackson, 1990).

Th e actual output of the network is compared with a target and an error measure is calculated. 

In the backward phase this error is fed backward through the network towards the input layer 

to modify the weights of the connections in the previous layer in proportion to the error. Th is 

process is repeated iteratively until the total error in the system decreases to a pre-specifi ed 

level or the rate of decrease in the total system error becomes asymptotic.

Alteration of the connection weights is done according to a generalised delta rule.

ji (n + 1) = ( joi = ji (n))  (7.7)

where,  is the learning rate parameter, j is an index of the rate of the change of the error 

and  is the momentum parameter (Atkinson & Tatnall, 1997). One of the major features 

of ANNs is their ability to generalise, that is, to successfully classify patterns that have not 

been presented previously (Kanellopoulos et al., 1992; Foody & Arora, 1997). Five variables, in 
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Figure 7.4 – Gray scale of June 2002 IKONOS sensor image of the study area. Units are in meters.
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particular, aff ect the accuracy with which an ANN can classify: size of training set, network 

architecture, learning rate, learning momentum and training cycle. Th ese variables which 

must be determined experimentally control the generalisation capability and total training 

time.

7.6 Study area

Study area is situated at the coastal edge of Cukurova Plain at the Eastern Mediterranean 

coast of Turkey. Th e study area covers approximately 5 by 10 km of agricultural land 

(comprising wheat, tomato, peanut, water melon, soil, fallow fi elds, burnt stubble) and coastal 

wetland ecosystems (comprising bulrush, coastal vegetation, sand dunes and lagoon) as shown 

in fi gure 7.4. An IKONOS sensor image with a spatial resolution of 4 m in four visible and 

near infrared wavebands was acquired on 14 June 2002 (fi gure 7.4). Additionally, land cover 

data were recorded one week either side of image acquisition and located using a GPS. Th e 

IKONOS sensor image was geometrically corrected using nearest neighbour and geocoded to 

the Universal Transverse Mercator (UTM) co-ordinate system. Fifteen approximately evenly 

distributed ground control points (GCPs) were selected from the image.

7.7 Image classifi cation

IKONOS sensor image was classifi ed using ML and ANN classifi ers and both spectral and 

textural information (from the variance, co-occurrence matrix and variogram) in per-pixel 

and per-fi eld formats.

Per-pixel approach

Th e ANN classifi cation was performed using MATLAB software. Th is software simulated a 

feed-forward multi-layer perceptron model (MLP). Th e network architectures ranged from 4 

to 10 input units (4 IKONOS sensor bands and, where relevant, textural measures). Th e fi rst 

hidden layer included three times the number of input layer units. Th e network was trained 

with a learning rate of 0.01 and learning momentum of 0.5 as back-propagation requires 

small learning rates for stable learning. Th e network was trained until the root mean square 

error was minimised (gradient of the error at the outputs was less than 0.05), after 4000-

8000 cycles. A sigmoid transfer function was utilised within the layers. Th e output was a hard 

classifi cation, with only the code of the predicted class of membership indicated for each 

pixel.

Texture measures

All texture measures were extracted from the fi rst principal component (Benediktsson & 

Sveinsson, 1997) of the four wavebands and these were used to create ‘texture waveband(s)’. 

Th en, per-pixel ML and ANN classifi cations were applied. Evaluation of the utility of these 

two classifi ers and associated texture measures was based on classifi cation accuracy.
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Variance

Variance was simple and speedy to calculate. Variance provided largest accuracies only when 

incorporated within the ANN classifi er (table 7.3). Variance over-emphasised the fi eld 

boundaries and linear features such as roads, this problem was even more severe with the ML 

classifi er.

Table 7.3 – Error matrix for the classifi cation of IKONOS sensor imagery using ML and ANN and 

variance as a measure of texture (PA: Producer’s accuracy (); UA: Users Accuracy ()).

Variance (Var)

ML ANN

Land covers PA UA PA UA

Wheat 88.9 66.0 81.6 73.2
Tomato 12.9 22.2 14.7 25.0
Peanut 94.4 47.9 77.2 62.0
Water melon 25.2 39.1 36.9 44.9
Soil 92.1 68.3 63.3 85.0
Fallow fi eld 100 22.4 56.5 53.1
Burnt stubble 66.7 27.8 45.4 55.5
Bulrush 89.4 51.8 86.4 63.0
Coastal veg. 32.9 45.3 46.1 55.7
Dune 92.7 45.8 86.1 67.5
Lagoon 89.9 81.7 91.7 82.5
Settlement 23.3 89.8 78.0 54.2
Overall accuracy 54.9 64.4

Table 7.4 – Error matrix for the classifi cation of IKONOS sensor imagery using ML and ANN 

incorporating statistics derived from the co-occurrence matrix (PA: Producer’s accuracy (); UA: 

Users Accuracy ()).

Spectral bands only CM (3 statistics) CM (6 statistics) 

ML ANN ML ANN ML ANN

Land covers PA UA PA UA PA UA PA UA PA UA PA UA

Wheat  84.2  66.0  77.5  71.1  50.4  66.0  76.9  72.2  48.3  73.2  84.7  62.9

Tomato  14.9  30.0  14.1  30.5  18.4  25.0  15.8  25.0  25.0  27.8  19.3  30.5

Peanut  75.0  54.9  65.6  69.7  59.0  57.7  72.7  67.6  77.5  43.7  87.6  54.9

Water melon  26.4  33.3  61.7  42.0  28.1  13.0  40.0  55.1  42.8  34.8  38.8  58.0

Soil  73.7  81.7  60.4  82.5  66.7  53.3  65.8  85.0  62.9  46.7  70.6  80.0

Fallow fi eld  77.8  28.6  61.1  44.9  60.0  42.8  74.2  46.9  100.0  20.4  65.5  38.8

Burnt stubble  73.9  47.2  45.6  72.2  37.1  72.2  44.8  72.2  32.6  80.5  41.0  69.4

Bulrush  93.0  49.4  83.9  64.2  89.8  54.3  87.5  43.2  84.8  69.1  78.8  82.7

Coastal veg.  34.3  56.6  44.2  53.8  37.8  55.7  43.9  54.7  33.3  59.4  39.5  60.4

Dune  92.6  60.2  77.1  65.1  51.2  79.5  86.4  68.7  42.5  57.8  91.8  67.5

Lagoon  89.4  91.7  97.2  88.3  97.1  83.3  97.1  85.0  95.8  76.7  95.2  82.5

Settlement  27.3  40.7  100.0  10.2  100.0  22.0  77.8  47.4  95.6  37.3  76.9  50.8

Overall accuracy 58.9 63.0 55.7 64.4 54.3 64.6
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Co-occurrence matrix

Six textural measures were calculated from four directions (0°, 45°, 90°, 135°) of a co-

occurrence matrix (table 7.2) and a mean value of all of these directions is presented (table 

7.4). Land cover classifi cation with ML and ANN classifi ers utilised fi rst, all co-occurrence 

matrix statistics (table 7.2) and second, three co-occurrence matrix statistics: contrast, angular 

second moment and correlation. Th e addition of co-occurrence matrix texture information 

increased by 1.4 and 1.6 respectively the overall classifi cation accuracy of the ANN 

classifi er but did not increase the accuracy of the ML classifi er (fi gure 7.5). Th e majority 

Soil

Fallow field

Burnt stubble

Bulrush

Wheat

Tomato

Peanut

Water melon

Coastal veg

Dune

Lagoon

Settlement

A classification incorporating co-occurence matrix (3 statistics) texture for part
of the study area

A classification incorporating semi variance lag of 1,2 and 3 pixels texture for part
of the study area
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30

Figure 7.5 – Classifi cations incorporating various texture measures. First column is ML, second 

column is ANN classifi cations.
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of the textural measures (variance, variogram etc.) emphasised class boundaries where the 

spatial variation is high however, statistics derived from co-occurrence matrix also provided 

information about within-class variation.

For example, correlation and angular second moment were able to measure high spatial 

variation for land covers with a relatively smooth texture (e.g., water), contrast measured 

texture independently of within class spectral variation. However, co-occurrence statistics did 

not provide a ‘signature’ for individual classes, as it is shown in fi gure 7.6.

Variogram

An algorithm based on the variogram computer code in the geostatistical software library 

GSLIB (Deutsch & Journel, 1992) was used in this chapter to compute the variogram 

and variance. Variogram coeffi  cients used calculated as texture measures included (i) an 

approximation of variogram range, (ii) the semi-variance at various lags and (iii) variance. 

Th e variogram range was computed using two approximations; (i) the method of Ramstein 

& Raff y (1989) and (ii) the roots of the fi rst derivative of a third-order polynomial fi tted to 

the variogram; both were unstable in the fi rst approach this was because the semi-variance at 

large lags was computed from too few data and in the second approach this was because the 

small number of pixels in each window restricted the number of lags for which semi-variance 

could be computed. In many instances, very large ranges were estimated if the variograms did 

not reach a limit. Th erefore, range was not employed in the analysis that follows.

62
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Figure 7.6 – Distribution of co-occurrence matrix statistics in 3D feature space.
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Lags

Th e eff ects on classifi cation accuracy was determined for texture measures derived from the 

average values of semi-variance at lags of 1, 2 and 3 pixels over a moving window (fi gure 7.7).

Th e size of this window should be related to the size of objects in the scene. For example, 

when classifying large continuous area of Brazilian rain forest Miranda and Carr calculated 

variogram textural measures over very large windows (e.g., 22 by 22 pixels for training) 

(Miranda & Carr, 1994; Miranda et al., 1998). However, Miranda et al. (1996) suggested that 

smaller window sizes were preferable for the calculation of variogram texture where land 

covers were smaller in area and large windows would increase the risk of contamination 

by class mixing. For this reason in this study window size of 7 by 7 was used. It is possible 
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Figure 7.7 – Variograms from IKONOS sensor imagery.

Table 7.5 – Error matrix for the classifi cation of IKONOS sensor imagery using ML and ANN 

incorporating variogram texture (PA: Producer’s accuracy (); UA: Users Accuracy ()).

Semi-variance lag of 1 Semi-variance lag of 2 Semi-variance lag of 3

ML ANN ML ANN ML ANN

Land cover PA UA PA UA PA UA PA UA PA UA PA UA

Wheat  87.8  67.0  82.1  80.4  88.7  64.9  75.8  74.2  87.3  63.9  80.9  70.1

Tomato  14.0  22.2  19.4  19.4  15.0  25.0  13.6  38.9  14.5  25.0  10.8  25.0

Peanut  92.0  48.6  75.6  65.5  93.3  49.3  89.2  58.4  93.3  49.3  81.0  69.0

Water melon  23.5  40.6  29.0  55.1  24.6  40.6  40.5  43.5  22.8  37.7  40.0  43.5

Soil  88.9  73.3  63.3  83.3  88.9  73.3  65.1  80.8  89.0  74.2  68.6  80.0

Fallow fi eld  100.0  22.4  54.5  36.7  100.0  20.4  70.0  42.8  100.0  20.4  82.6  38.8

Burnt stubble  61.5  22.2  50.0  63.9  66.7  27.8  48.1  72.2  66.7  27.8  41.3  72.2

Bulrush  92.3  44.4  83.0  54.3  83.8  38.3  97.4  46.9  79.4  33.3  83.3  61.7

Coastal veg.  34.0  48.1  43.9  50.9  33.5  49.0  45.2  57.5  33.5  50.0  49.6  59.4

Dune  92.1  42.2  85.7  65.1  97.4  44.6  78.1  68.7  97.3  43.4  85.3  69.9

Lagoon  89.7  80.0  97.0  81.7  89.7  80.0  93.3  81.7  88.9  80.0  97.0  80.0

Settlement  25.0  91.5  69.4  42.4  25.3  93.2  72.9  59.3  25.7  93.2  72.7  67.8

Overall accuracy (%) 54.9 63.2 54.9 63.2 54.3 65.3
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to calculate lag of 1 pixel by using smaller window sizes such as 3 by 3 or 5 by 5, however 

computing semi-variance at a lag of 1 pixel over a larger window provides more robust 

measures over a wide range of lags. For each pixel, average values of semi-variance for a lag of 

1, 2 and 3 pixels were computed and used in the classifi cation along with spectral data (table 

7.5). Th is measure of texture, at a semi-variance lag of 3 pixels with ANN classifi er, provided 

in the most accurate classifi cation of land cover.

Variance

Semi-variance at a lag of 3 plus variance over the entire image were measured for each pixel 

of a fi rst principal component image within a moving 7 by 7 window. Th ese texture measures 

were used in the same way as a band within ML and ANN classifi ers with accuracy results 

given in table 7.6.

Table 7.6 – Error matrix for the classifi cation of IKONOS sensor imagery using ML and ANN 

incorporating variance and variogram texture (PA: Producer’s accuracy (); UA: Users Accuracy 

()).

Var+ Semi-variance lag of 3

ML ANN

Land covers PA UA PA UA

Wheat  86.9  61.8  73.7  75.2
Tomato  13.3  22.2  11.1  16.7
Peanut  89.7  49.3  80.3  66.2
Water melon  21.7  33.3  28.8  43.5
Soil  91.4  70.8  72.0  81.7
Fallow fi eld  100.0  18.4  86.4  38.8
Burnt stubble  64.3  25.0  41.8  77.8
Bulrush  78.6  40.7  92.5  45.7
Coastal veg.  32.2  47.2  44.5  53.8
Dune  96.9  37.3  81.4  68.7
Lagoon  88.9  80.0  94.2  80.8
Settlement  24.1  94.9  69.0  67.8
Overall accuracy 53.0 63.6
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Figure 7.8 – Relationship between semi-variance and variance for two land cover classes.
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Th e use of the variance in addition to semi-variance at a lag of 3 did not increase the accuracy 

of classifi cation. However, there is a strong linear correlation between semi-variance at a lag 

of 3 pixel and variance and pixels diverting from this linear trend tended to be edge pixels or 

pixels with extreme values as a result of class mixing (fi gure 7.8).

7.8 Per-fi eld approach

To utilise texture more eff ectively a per-fi eld rather than a per-pixel approach was applied. 

A per-fi eld approach involved integration of spectral and vector (digitised fi eld boundary) 

data. Th e fi eld boundaries were digitised from an agricultural map. Th e resulting vectors were 

rasterised and used to ascertain which pixels were members of each fi eld. Textural measures: 

variance, six statistics derived from the co-occurrence matrix and variogram were computed 

on a fi eld-by-fi eld basis and used in addition to spectral information. Th ese texture measures 

were computed from the fi rst principal component of the four wavebands. Th e inputs to the 

classifi er were average values of texture within each fi eld. An algorithm based on the gamv2.f 

variogram computer code in the geostatistical software library GSLIB (Deutsch & Journel, 

1992) was modifi ed and used to compute the variogram and variance texture measures on 

per-fi eld basis. Co-occurrence matrix code written in FORTRAN was used to compute 

the six statistics (contrast, angular second moment, correlation, entropy, dissimilarity, 

homogeneity). Mean DN and texture measures for each fi eld were used for only the ANN 

classifi er as previous sections demonstrated that ANN was always more accurate than a ML 

classifi er when utilising texture. 25 fi elds were used in a training set to classify 686 agricultural 

fi elds comprising wheat, tomato, peanut, water melon, soil, fallow fi eld and burnt stubble. Th e 

size of the training set was very small and one of the main limitations for the ANN classifi er. 

However, the training data set was representative because, each value was an average of pixel 

values within a fi eld. Th e accuracy results were derived using whole fi elds rather than points 

(table 7.7) as such the accuracy fi gures are for the population. Texture was utilised more 

eff ectively in the per-fi eld approach pixels were taken as a block and so the measure of texture 

was unaff ected by neighbouring parcels. In addition to the use of variance and semi-variance 

at a given lag as measures of texture an approximation of the variogram range for each fi eld 

(using the roots of the fi rst derivative of a third-order polynomial fi tted to the variogram 

(Lloyd & Atkinson, 1998) was employed. Th e highest overall accuracy, 73.4, was achieved 

using DN and semi-variance at lag of 3 pixels and range.

7.9 Comparing texture measures

Th e range and semi-variance at a lag of 3 are provided some of the highest per-pixel 

classifi cation accuracies (table 7.6) as they have captured relevant within fi eld variation (fi gure 

7.9) and so are of particular interest for per-fi eld analysis.

In most cases, semi-variance at a lag of 3 increases linearly with variance. Exceptions to the 

general pattern are of interest include fi eld 148 which is long and thin and so contain a great 

proportion of mixed pixels and fi eld 389 that contains two crops in one fi eld. Th e aim here is 

to identify texture measures which vary between classes rather than within them. As variance 
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Table 7.7 –Error matrix () for the per-fi eld approach. (DN: mean (per-fi eld) DN values (4 

bands); var: variance; ran: range; CM: Co-occurrence Matrix; PA: Producer’s Accuracy; UA: User’s 

Accuracy).
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is a measure of deviation from the mean it is aff ected by the magnitude of variability only 

(for example, it may be high where there are distinct, isolated, homogeneous areas and where 

variation is scattered spatially). Th e variogram, in contrast, is a local measure and is aff ected 

directly by the spatial confi guration of pixels. Th e semi-variance at a lag of 3 is, therefore, high 

only where values are scattered spatially (that is, where the confi guration is irregular). More 

work is required on assessing the benefi ts of using diff erent texture measures for classifying 

diff erent kinds of land cover. Another potential issue aff ecting the performance of the texture 

measures is the size of the fi elds (table 7.8).

Th ere is no obvious relationship between the number of pixels in a fi eld and the number 

of mis-classifi ed fi elds. However, the variogram with larger lags of pixels would be most 

profi tably employed where the number of pixels are constant and reasonably large within the 

fi eld.

To explore further the relationship between classifi cations produced using the variogram and 

statistics derived from the co-occurrence matrix several correctly classifi ed and mis-classifi ed 

fi elds were extracted from the data set. In addition to summary statistics (table 7.8) the fi elds 

on the image were examined visually and the nature of the textural variability and form of 

contamination (that is, scattered and discontinuous or homogenous blocks of mixed pixels) 
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Figure 7.9 – Th e relationship between semi-variance lag of 3 and variance for wheat fi elds. Th e 

number refers to the fi eld.

Table 7.8 – Th e number of mis-classifi ed fi elds according to fi eld size (DN: mean (per-fi eld) DN 

values (4 bands);  var: variance; ran: range; CM: Co-occurrence Matrix).

Number
of pixels 
in fi elds

Mis-classifi ed fi eld numbers by spectral and textural measures

DN DN+var DN+ran DN+3 
lags

DN+var+3
lags

DN+ran+3
lags

DN+CM3 DN+CM6

1-100  3  3  5  4  3  4  4  4
101-200  23  30  25  27  23  16  22  22
201-300  25  30  23  23  28  21  28  27
301-400  16  20  19  24  20  16  18  19
401-500  14  16  16  21  20  19  18  21
>501  132  153  136  153  165  129  175  173
Total  213  252  224  252  259  205  265  266
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were related to the success or otherwise of measures used to inform the classifi cation in each 

case (table 7.9).

Th e fi elds classifi ed correctly and mis-classifi ed using 5 statistics derived from the co-

occurrence matrix may be placed into four groups:

i   Correctly classifi ed by semi-variance at a lag of 3 and range only: 19, 202, 455.

ii  Correctly classifi ed by semi-variance at a lag of 3 and variance only: 84, 479.

iii Mis-classifi ed by semi-variance at a lag of 3 (and range, variance): 76, 111, 666.

Th e three groups form distinct collections of fi elds. Th e spatial variability apparent in the 

fi elds found within these groups may be summarised as: 

i   Spatial variability was high with patches of distinct DN however, fi elds were large;

ii  A large proportion of the area of these fi elds was very mixed and variation was visually 

erratic.;

iii Fields were visually mixed and small, additionally in most cases there appear to be grounds 

for adding within-fi eld boundaries. Th e semi-variance with range and variance appeared 

to be less aff ected by class mixing within the fi elds.

Table 7.9 – Selected fi elds and summary statistics contrasting the use of diff erent measures of texture.

Field
no

Number
of pixels

Land cover Mean 
(DN)

SD (DN) Min. 
(DN)

Max.
(DN)

Correct Mis-
classifi ed

202  530 Wheat  911.08 91.56 581 1222 Vario&R Others
 19  4235 Tomato  1062.22 49.88 827 1237 Vario&R Others
666  416 Tomato  953.49 89.43 581 1202 Others Vario&R
 76  165 Peanut  1075.85 42.30 991 1176 Others Vario&Var
111  224 Peanut  1029.61 48.32 816 1124 Others Variog
 84  1394 W.melon  1032.09 107.47 639 1244 Vario&Var Others
479  348 W.melon  914.08 73.43 718 1085 Vario&Var Others
455  355 Burnt stabble  817.70 71.04 731 1100 Vario&R Others

Table 7.10 – Error matrix of per-pixel classifi cation of agricultural sub-scene using ANN 

incorporating semi-variance (lag of 3).

Wheat Tomato Peanut Water 
melon

Soil Fallow 
fi eld

Burnt User’s 
accuracy

(%)

Wheat 120540  13132  12152  4900  2744  8036  5880  72.0
Tomato  17248  30772  6272  25284  1176  4312  2744  35.0
Peanut  11564  5292 221284  17444  3724  1960  1568  84.2
Water melon  12348  27440  24108  48804  13132  9996  3136  35.1
Soil  4508  3332  83104  3920  300076  30184  0  70.6
Fallow fi eld  1960  1764  3920  588  4704  76636  3724  82.1
Burnt stubble  196  196  196  0  0  5292  17248  74.6
Producer’s accuracy (%) 71.6 37.5 63.0 48.3 92.2 56.2 50.3  68.0*

* Overall accuracy
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7.10 Comparing per-pixel and per-fi eld approaches

In addition to per-fi eld classifi cation of agricultural land cover, a per-pixel approach was 

used to classify the same agricultural sub-scene to enable direct comparison between the two 

sets of results. Per-pixel classifi cation was implemented using semi-variance (lag of 3) plus 

spectral data and compared with per-fi eld classifi cation with range and semi-variance (lag of 

3) plus spectral data. Th e accuracy for the per-pixel approach was determined by comparing 

the classifi ed image to the reference land cover image. Th us pixels were assessed and accuracy 

fi gures refer to the population (table 7.10).

In comparison with the per-pixel classifi cation, the per-fi eld classifi cation increased the 

accuracy with which the spatially more variable land covers (wheat, peanut, soil) were 

classifi ed. Th e overall per-pixel classifi cation accuracy was 65.3 versus 73.4 for per-fi eld 

classifi cation accuracy. Considerable misclassifi cation occurred in several classes, for example 

tomato and water melon were confused as they were spectrally similar. Additionally, the 

soil background eff ect was severe as it increased the internal variability within agricultural 

fi elds. However, this high spatial frequency was used to provide additional information to 

discriminate between land cover classes in per-fi eld classifi cation.
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Fallow field
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Bulrush

Coastal veg.
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Figure 7.10 – Combination of classifi cations based on per-pixel and per-fi eld approaches.
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Table 7.11 – Error matrix of the combined per-pixel and per-fi eld classifi cation.
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7.11 Combining per-pixel and per-fi eld approaches

Th e eff ectiveness of a per-fi eld approach was shown in previous section. However, fi eld 

boundary data limits the use of a per-fi eld approach for the classifi cation of semi-natural 

vegetation. Fuzzy boundaries, sparse and scattered land cover types (particularly in the 

Mediterranean) make this approach less appropriate than the traditional per-pixel approach 

with texture data. Synergy of these approaches can be utilised to produce the most accurate 

classifi cation. Th e agricultural land cover was masked out using fi eld boundary data then per-

pixel and per-fi eld image classifi cations were performed for semi-natural and agricultural 

areas respectively. Outcomes of these classifi cations were mosaiced (fi gure 7.10). Th e accuracy 

of this classifi cation was assessed by using the same ground control point as used in per-

pixel approach section (table 7.11). Th e highest overall accuracy 76.7 was achieved using this 

combination technique.

7.12 Conclusions

Th is chapter has integrated spectral and spatial information in the form of various texture 

measures and digitised dominant spatial units (fi eld boundary information) by using two 

classifi ers (ML and ANN) with the aim of increasing the eff ectiveness of classifi cation (by 

means of maximising the percentage accuracy) with which land cover can be classifi ed. Th e 

spatial (textural) information was the variance, variogram and the co-occurrence matrix. 

Synergy of the techniques mentioned above enabled more accurate classifi cations than those 

obtained using standard techniques alone.

It is diffi  cult to defi ne suitable texture measure to incorporate into the classifi cation of 

Mediterranean land cover, but the following fi ndings are important for considering which 

texture measure, approach and classifi er to use for successful classifi cation:

•   One of the principle fi ndings of this study was that the ANN classifi er utilised texture 

more eff ectively than ML, the increases in the accuracy were as great as 11. Th e use of 

ANN alleviated the problems, in particular where the spectral properties of the land cover 

classes is complex and overlaps in the feature space. Th e success of the ANN classifi er was 

mainly due to its generalisation capability.

•   Utilising the vector-based boundary information as a means of delineating fi elds enabled 

the extraction of data on a fi eld-by-fi eld basis (per-fi eld approach). Th is reduced the 

problem of the over-emphasis of boundaries in texture classifi cation. Th is approach 

provided a larger number of pixels than a window to calculate texture and so, was not 

aff ected by localised deviations from the average spatial variability. Additionally, the 

classifi cation on a per-fi eld basis is advantageous as it (i) saves training time, (ii) reduces 

computational eff ort, (iii) increases accuracy and (iv) reduces the number of data to be 

classifi ed. Furthermore, the fi nal output from per-fi eld approach was in an appropriate 

and comprehensive format for presenting the land cover information to planners and 

resource managers.

•   For the classifi cation of land cover types variogram measure of spatial variability provide 

more accurate classifi cations than do statistics extracted from the grey-level co-occurrence 

matrix commonly used in image processing. Variograms have been used extensively in 
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soil science and in geostatistics to describe patterns of spatial variation. However, in 

image analysis and particularly in remote sensing the application of variogram relatively 

new. Very few publications are available concerning variogram texture classifi cation and 

optical image applications. Th e majority of published studies on the use of variograms 

for image classifi cation relate to radar images and are without accuracy fi gures. In this 

study it was shown that variograms hold considerable potential for remotely sensed image 

classifi cation. Furthermore, the variogram and the co-occurrence matrix are compared, in 

detail, for the fi rst time within this study. Th is study was shown that the variogram is a 

promising tool and can be utilised for classifying appropriate data such as, high spatial 

resolution images, in such situations it can be an alternative to the traditional measure of 

texture. Th e primary advantage of the variogram measure appears to be that they are less 

adversely aff ected by high levels of contamination than are the statistics derived from the 

co-occurrence matrix. Another advantage of the variogram over other texture measures is 

the capability to compute the measure as a lag by lag basis. In this study only three and 

fi ve lags could be analysed in per-pixel and per-fi eld format respectively.

•   Coeffi  cients of variogram models, for example, the range could not be used in per-

pixel format. Th is was due to the small number of pixels within the land cover parcels 

this is turn resulted in large ranges and as such the variograms did not reach a limit of 

semivariance which means texture was not quantifi ed distinctively. However, range was 

employed in per-fi eld classifi cation as a result of taking blocks of pixels within the fi elds. 

Incorporating range together with variogram into the classifi cation resulted highest 

classifi cation accuracy.

•   Th e use of the variance in conjunction with the variogram did not result in any increase in 

classifi cation accuracy, however, plots of variogram vs variance revealed useful information 

for interpreting spatial variability.

Th is chapter proposed using three techniques to utilise spatial information more effi  ciently in 

land cover classifi cation either singularly or in combination as alternatives to the traditional 

techniques.



Chapter 8

Contextual Image Analysis Methods for Urban 

Applications

Peng Gong & Bing Xu

8.1 Introduction

 Per-pixel classifi cation makes no use of spatial information in the image. It can be easily 

implemented in a computer system that can easily diff erentiate gray-level values. In contrast, 

visual interpretation always involves use of spatial features in the image such as texture, 

shape, shade, size, site, association etc. It usually requires a lot more computation to handle 

spatial information in a computer system. Compared with manual interpretation, computer 

techniques lag far behind. Algorithms using data from more than one image pixel in the 

classifi cation of one pixel are referred to as  contextual classifi cation. A great deal of eff orts 

has been made to develop contextual image analysis algorithms. In urban remote sensing, it is 

an important component to be able to characterize spatial structural diff erences in remotely 

sensed images. Contextual classifi cation can be summarized in three types according to their 

use of spatial features at diff erent stages: preprocessing, post-processing approach and use of 

contextual classifi er (fi gure 8.1).

Th e indispensable part of a preprocessing classifi cation method is the involvement of the 

spatial features. Once spatial features are extracted, any per-pixel classifi cation algorithm can 

be used. Spatial features can be extracted using various spatial fi lters or more advanced texture 

analysis algorithms. For example, an  edge-density image can be generated with a high-pass 

fi lter applied to an image followed by a thresholding and a smoothing fi ltering. Such an 

image can be used to separate the vegetation in the residential and industrial areas from that 

in the rural/agricultural areas. Use of this image with multispectral image has considerably 

reduced classifi cation confusions between urban and rural areas (Gong & Howarth, 1990a). 

Because many spatial features can be extracted from one band of an original image, feature 

reduction methods can be applied to select and reduce the amount of redundancy. Gong 

et al., (1992) assessed a number of texture measures in urban land use classifi cation, they 

found that the eff ect of most of spatial measures can be grouped into highlighting the low-

frequency or the high-frequency component of the image. Th erefore, most texture analysis 

performed to an image would achieve a smoothing or edge-enhancing eff ect. Another unique 

measure is entropy that measures the level of diversity in a pixel neighborhood.

Th e postprocessing method requires some spatial analysis based on the intermediate 

classifi cation results obtainable from a multispectral classifi cation of the original image. Th e 
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postprocessing analysis can be as simple as an application of a  mode fi lter to the intermediate 

results or as complicated as a reclassifi cation of the intermediate results into information 

classes. Th e mode fi lter modifi es the classifi cation results based on a majority role, thus it 

is also called a  majority fi ter. Simple postprocessing requires a careful initial classifi cation. 

Some postprocessing algorithms are based on the modifi cation of the probability values of 

each pixel based on the probability compatibility among pixels in a local neighborhood. 

Th is type of technique is known as  probabilistic relaxation (Rosenfeld et al., 1976; Richard 

et al., 1982; Sun et al., 2003). Gong & Howarth (1989) applied probabilistic relaxation 

classifi cation to urban land-cover classifi cation and found that this algorithm can improve 

classifi cation accuracy to a certain extent (5) while the computation requirement was high. 

Some postprocessing can be done based on rough classifi cation or clustering results leaving 

the postprocessing analysis to regroup the clusters into the fi nal classes (Wharton, 1983; 

Zhang et al., 1988; Gong & Howarth, 1992a). Wharton used histogram based clustering to 

fi rst transform an airborne multispectral image into clusters. Occurrence frequencies of the 

various clusters in a pixel neighborhood are used to classify land-use categories for the central 

pixel. Zhang et al. (1988) applied land cover classifi cation to a selected section of Landsat 
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Figure 8.1 – Incorporation of spatial features into image classifi cation through a preprocessing 

procedure (left), direct use of contextual classifi er (middle) or a postprocessing procedure (right).
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TM data and then used the occurrence frequencies to characterize land use types. Gong & 

Howarth (1992a) applied a similar approach to fi rst classify SPOT multispectral image of an 

urban and rural-urban fringe area near Toronto, Canada, into 12 land-cover classes and then 

used the cover-frequency approach to re-map the land cover types into 14 land-use classes. In 

these post-processing algorithms, land-cover classifi cation or clustering results become the 

intermediate results for further image classifi cation. Compared to the direct use of  maximum 

likelihood classifi cation (MLC) for urban land-use classifi cation, the indirect postprocessing 

techniques can improve the fi nal land-use classifi cation accuracy by 15-25. Th is method 

outperforms such contextual image analysis algorithms as use of texture measures (Gong 

et al., 1992) and probabilistic relaxation (Gong & Howarth, 1989). Th is level of land use 

classifi cation accuracy improvement over the MLC method is hardly matched by other 

contextual classifi cation algorithms.

Instead of extracting contextual information and store them for subsequent classifi cation as 

in the preprocessing and postprocessing contextual algorithms, a contextual classifi er makes 

direct use of contextual information from a pixel window in pixel labeling. A frequency-

based classifi er can be considered as a contextual classifi er as it can be directly applied to an 

image when the total number of gray-level values (or vectors in multi-dimensional space) in 

the image is not too big. Clearly,  artifi cial neural network method can be applied to gray-level 

values (vectors) directly from pixel neighborhoods in an image. For instance, the gray-level 

vectors of multiple pixels of a pixel window can be organized in a composite gray-level vector 

and applied as input to a neural network (Hepner et al., 1990). As a natural extension to the 

Bayes rule, the a posteriori class probability calculation of a pixel can be characterized by the 

joint conditional probabilities of its neighborhood pixels. Th e decision of classifi cation is 

governed by the compound information from a pixel neighborhood. Th is type of classifi cation 

is known as compound decision method (Welch & Slater, 1971; Landgrebe, 1980; Swain et 

al., 1981). However, due to the computational complexity and unrealistic assumptions, this 

type of direct contextual classifi cation has rarely been applied to land cover and land use 

classifi cation.

While the minimum classifi cation unit is usually a pixel in most of the classifi cation 

algorithms, fi eld-based (also known as  region-based or  object-based) classifi cation methods 

have been developed since 1976 (Ketting & Landgrebe, 1976) for the classifi cation of 

agricultural lands with remote sensing. In object based image classifi cation, initially an 

image must be divided into homogeneous regions (objects). Classifi cation decision is then 

made object-by-object. Th is can be considered as the preprocessing followed by per-object 

classifi cation. Knowledge-based approaches have been developed to process aerial photograph 

based on homogeneous image segments (objects) using rules about neighborhood and shape 

and size features of individual segments (Mackeown, 1987). In computer vision, initial image 

segmentation is usually achieved by image thresholding,  region-growing or clustering. 

Th e resultant segmented image can then be passed to region extraction procedure, where 

segments are treated as a whole object for successive processing. Gong & Howarth (1990b) 

employed a land cover classifi cation to initially segment the original image and applied a 

knowledge-based algorithm to group land-cover polygons into land use types in the rural-

urban fringe of Toronto using SPOT multispectral image. Th e classifi cation decision is based 

on ‘if – then’ rules stored in a knowledge base whose rules are triggered by object properties 
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such as the texture, average gray-level vector, object shape and size and object neighborhoods. 

An approach based on image segmentation followed by knowledge based inferencing has 

been adopted by a new commercial package – eCognition.

In this chapter, we introduce the  frequency-based contextual classifi er (FBC). Th e simplicity 

and eff ectiveness of FBC are illustrated with multispectral images and a single panchromatic 

IKONOS image. Th e capability of FBC is further empowered by a preprocessing of the 

original image with a modifi ed  texture spectrum (TS) algorithm.

8.2 Frequency-based contextual classifi er

Occurrence frequency, fl(i, j, v), is defi ned as the number of times that a pixel value v occur 

in a pixel window (also known as a kernel, a mask) centered at (i, j) with a lateral length of l. 

Because the information in a pixel window is used to classify a single pixel – the central pixel, 

we consider this type of classifi cation a contextual classifi cation. For a single band of image, 

v represents a gray level. For a multispectral image, v represents a gray-level vector. Within 

each pixel window, one can obtain an occurrence frequency table containing all possible vs.

When a pixel window at a given size is moved all over an image(s), one can generate a 

frequency table for each pixel in the image(s), except for those pixels close to the image 

boundary. Th ose pixels within a distance to the image boundaries of half the lateral length, l, 

of the pixel window used are called boundary pixels. To assure a small proportion of boundary 

pixels, the pixel window sizes used must be considerably smaller than the image size.

Th e number of occurrence frequencies in a frequency table increases linearly as the number 

of gray levels in an image increases, and exponentially as the number (or dimensionality) of 

spectral bands increases. For a single band of image quantized into n gray levels (e.g., for an 

8 bit image n=256 gray levels while for a 16 bit image n=65536 gray levels), one can produce 

gray-level occurrence frequency tables with a maximum number of n frequencies in each 

table. Th e maximum number of frequencies in a frequency table will increase to nm when 

m spectral bands having the same number of gray levels are used. It requires a large amount 

of random access memory (RAM) in a computer to handle the nm frequencies. For this 

reason, effi  cient gray-level vector-reduction algorithms are needed. One such algorithm will 

be introduced in the following section. Frequency tables can be generated from gray-level 

vector-reduced images, clustered images, or land cover images as FBC is applicable to data of 

any scale of measurement.

Th ere are several advantages of using frequency tables in comparison with the use of spatial 

statistical measures as in spatial feature methods. First, a frequency table contains more spatial 

information than many fi rst-order statistical measures such as the mean, standard deviation, 

skewness, kurtosis, range, and entropy can all be derived from a gray-level frequency table 

(Gong & Howarth, 1992b). Second, more computation is required to obtain statistical 

parameters after frequency tables are produced. Th erefore, it is unnecessary to use statistical 

measures because frequency tables can be quickly computed, directly compared and analyzed. 

Th e third advantage is that a feature selection procedure which is used to evaluate statistical 
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parameters is no longer needed because frequency tables contain more spatial information 

required for the classifi cation than the most statistical parameters. Fourth, disk storage is not 

required by frequency tables due to the simplicity of their real-time creation.

Th e success of the frequency table method in land-use classifi cations depends largely on the 

appropriate pixel window size being selected for frequency table generation. If the window 

size is too small, suffi  cient spatial information cannot be extracted to a frequency table to 

characterize a land-use type. If the window size is too large, much spatial information from 

other land-use types could be included. Th ere seems to be no eff ective criterion for selecting 

pixel window sizes. Parametric feature selection criteria do not work for frequency tables, 

simply because they are not parametric. Driscoll (1985) examined frequency means obtained 

from training samples using pixel windows with a range of successive sizes. Th e minimum 

window size was selected at which frequency means begin to stabilize in comparison to 

frequency means extracted from larger window sizes. Comparisons were made visually. 

Th is method is, however, based only on within-class variances. Th us, as in discriminant 

analysis, a separability measure was proposed by Gong & Howarth (1992b) to select optimal 

window sizes. However, they did not fi nd it particularly useful. Other measures such as semi-

variagrams may also be applicable (Woodcock & Strahler, 1987), but our experience suggests 

that none of these methods are particularly eff ective. Th erefore, optimal window sizes must 

be empirically determined at this point.

Th e  minimum-distance classifi er with the city-block metric (Gonzalez & Wintz, 1987) is 

used in the frequency-based classifi er. A city-block distance between two vectors is calculated 

by fi rst obtaining a diff erence between every two corresponding vector elements, and then 

summing all the absolutes of these diff erences.

For given mean histograms (frequency tables) of all c land-use classes, hu=(fu(1), fu(2), ..., 

fu(Nv)), u=1, 2, ... c, the city-block distance between a new histogram hl(i, j) and hu is calculated 

from the following:

du =  | fu (v) - f  (i, j, v)|
N

v

v=0
 (8.1)

Th e classifi er compares all the c distances and assigns pixel (i,j) to the class which has a 

minimum distance du to hl(i, j).

To capture the spatial structure and brightness variation of a certain land-use type in hu, 

block-training strategy is applied. Th e shape and size of the training blocks contain clues 

for selecting the appropriate pixel window size to be used in generating frequency tables at 

the classifi cation stage (Gong & Howarth, 1992b). A small training area may not refl ect and 

capture the spatial pattern of the class while a relatively large and representative training area 

will only cause multiple counting of the pattern that can be eliminated by normalizing the 

frequency into percentage. A major barrier to improving classifi cation accuracies in contextual 

image classifi cation involving spatial features extracted from local neighborhoods (pixel 

windows) is the lack of methods in reducing the misclassifi cation that occurs at boundaries 

of diff erent classes. Th is type of misclassifi cation is caused by the use of pixel neighborhoods 
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Figure 8.2 – A false color composite of a SPOT multispectral image of the northeast Toronto, 

Canada (left), and land-use classifi cation results using the frequency-based contextual classifi er 

(right) using a pixel window of 13 by 13. Most of the classifi cation errors are at the borders between 

two land-use classes. Please consult the enclosed CDROM for a full colour version.

Industrial/
Commercial Golf course

Actual boundary

Transitional classesPixel windows

62
30

Figure 8.3 – An illustration of the pixel-window eff ect on the classifi cation results at the boundary 

of two distinct land-use classes. Th e two patterns between A and B are the transitional classes which 

are misclassifi ed by an frequency-based classifi er (From Gong 1994).
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Figure 8.4 – An illustration of the thresholding and region-growing procedures. Th e thresholding 

prevents the area along the boundary of two classes from being classifi ed. Th e region-growing 

algorithm will then be used to fi ll up the gap between classes A and B (From Gong, 1994).
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(e.g., Gong & Howarth, 1992a;b; Eyton, 1993). An example illustrating this phenomenon can 

be found in fi gure 8.2.

Th e  boundary eff ect can be illustrated using a simple example. In fi gure 8.3 there presumably 

exist only two land-use classes: Classes A and B. As a pixel window moves from the area 

of Class A across the boundary to the area of Class B, the occurrence frequencies extracted 

from each move of the pixel window change. Assume Class A is industrial/commercial with 

concrete surface dominant and Class B is golf course with grass dominant. If a pixel window 

moves from Class A to Class B, one will observe that frequencies extracted from this window 

change from concrete surface dominating, to similar proportions of concrete surface and 

grass, to high grass proportion and low concrete proportion, and fi nally to grass dominating 

the pixel window. Th e central two concrete and grass confi gurations are transitional from 

Class A to Class B, and depending on other classes included in the classifi cation scheme 

their frequencies may be more similar to new residential or old residential classes. Th us, as 

a pixel window moves across the boundary between two classes, four or even more land-use 

classes would be obtained; those transitional classes are errors.

Th e level of boundary eff ects changes as the confi guration of image resolution and class 

defi nition changes. For a given class, the size and shape of ground components aff ect the level 

of boundary eff ects. If those ground components are important features for discriminating 

the specifi c class from others. Th e image resolution needs to be suffi  ciently high to allow 

those components to be observable on the image. Th e pixel window needs to be large enough 

to allow those components to be covered in one pixel window in order to guarantee that 

frequencies extracted are representative to the class. Generally, boundary eff ects tend to be 

more serious as image spatial resolution improves because coarser resolution will smooth out 

the boundary eff ects. On the other hand, boundary eff ects will increase as the size of pixel 

window increases.

Since the boundary eff ect is a spatial problem, it should be corrected spatially. Gong (1994) 

proposed a two step correction. First, a threshold, •l2 (0< <2), is compared with the city-

block distance du for class u. If du(i, j)≤ •m2, pixel (i, j) is a candidate for land-use class u. 

Otherwise, pixel (i, j) is rejected from land-use class u. If more than one land use class is 

a candidate, pixel (i, j) belongs to the closest land-use class. =2 is equivalent to applying 

no thresholding whereas =0 implies that only those pixels whose calculated occurrence 

frequencies match exactly with those of a particular class will be classifi ed. Th erefore, by 

adjusting the threshold  between 0 and 2 some transitional classes between boundaries of 

two diff erent classes may remain unclassifi ed. Following the distance thresholding, some 

pixels will be left unclassifi ed. Second, a simple region-growing procedure can be applied 

iteratively to fi ll up the gaps (unclassifi ed pixels) between two classes (fi gure 8.3). In this 

procedure, only unclassifi ed pixels may be aff ected. An unclassifi ed pixel is fi rst located. Its 

eight neighbors are then checked to see if any of these neighbors have been classifi ed. If 

the answer is no, the algorithm searches for the next unclassifi ed pixel and does the same 

neighborhood check. If the answer is yes, the majority rule is applied to label the unclassifi ed 

pixel. Th e number of unclassifi ed pixels is usually small (less than 10 in an image). In 

addition, the region-growing procedure is computationally simple. Th erefore, it requires a 

very small amount of computation.
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Th e iterating  region-growing procedure is terminated according to either (1) a user 

determined number of iteration or (2) when every unclassifi ed pixel is assigned a class. If a 

classifi cation scheme is not complete for an area, there should be pixels remaining unclassifi ed 

at the end of a classifi cation task. In this case, one should use the number of iterations as 

the criterion to control the region-growing procedure. A suggested number of iterations is 

l/2 + 1 (i.e., half of the lateral length of the pixel-window used plus one). Th is is because the 

maximum width of any unclassifi ed gaps is l, and in each iteration the algorithm fi lls up a 

two-pixel wide gap. On the other hand, if the classifi cation scheme is perfectly suitable for 

an area, the region growing could be terminated when all pixels are classifi ed. Th e second 

criterion is selected to obtain an optimal land-use classifi cation of a portion of the City of 

Calgary using an 8-band  Compact Airborne Spectrographic Imager (CASI) image at a 

resolution of 7.5 m (fi gure 8.5). Th e 8-band image was fi rst converted to a one-channel image 

with a gray-level vector reduction algorithm (Gong & Howarth, 1992b). Th e FBC was fi rst 

applied to the gray-level vector reduced image without boundary eff ect reduction. Th e use of 

frequency distance thresholding and region growing has increased the overall classifi cation 

accuracy from 85 to 89 for a total of 7 land use classes.

8.3 FBC applied to a modifi ed form of texture spectrum

As explained earlier in the discussion of the properties of frequency tables, the size of 

frequency table increases linearly with the number of total possible gray-level values (vectors) 

and exponentially with the number of image bands. In order to make effi  cient use of the 

FBC technique, the number of gray-level vectors in multispectral space must be reduced. 

Th e simplest way of doing this is by compressing the number of gray levels in each band 

of the image. Th is gray-level vector reduction in multispectral space is less optimal than in 

eigenvector space. Th is was the reason for the development of the gray-level vector reduction 

62
30

Figure 8.5 – An false color composite of CASI imagery obtained over the City of Calgary (left), and 

the frequency-based contextual classifi cation result (right) with a thresholding and region growing 

adjustment to reduce the boundary eff ect. Please consult the enclosed CDROM for a full colour 

version.
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algorithm (Gong & Howarth, 1992b). In fact, frequency-based approaches can be applied not 

only to image gray levels, clusters or land cover classes but also to higher order statistics such 

as texture spectrum (TS) or gray-level coocurrence matrices (GLCM). In the following, we 

introduce how a modifi ed version of TS can be constructed and applied with FBC to classify 

a panchromatic IKONOS image.

Th e original TS algorithm was to construct a texture unit (TU) histogram in a pixel 

window. TU is designed to consider the relationship of spectral properties of a pixel with 

its neighboring pixels within a 3 by 3 window. Each pixel has 8 neighbors along 8 directions 

(starting at the upper left: 135o, 90o, 45o, 0o, 315o, 270o, 225o and 180o) coded from 1 to 8 (Wang 

& He, 1990). Th e order of direction can be arbitrary but need to be consistent throughout the 

entire classifi cation process. Th e gray level value of the target pixel at the center is compared 

with that of each neighbor to produce U that takes one of three logical relationships ‘smaller’, 

‘equal’, or ‘greater’ coded as ‘0’, ‘1’ or ‘2’, respectively. A TU is calculated for the central pixel 

according to

TU =  Ui · 3
i-1

8

i=1
 (8.2)

Calculating TU for each pixel in an image will result in a TU image with a total possibility of 

38 (6561) texture units. Th e TU histogram TS can then be built for a pixel window of a given 

size from the TU image.

Since TS is based on comparison of the gray-level value of the center pixel with those of its 

surrounding pixels, it is not as sensitive to noise as the GLCM that uses gray values directly. 

Wang & He (1990) did not apply the TS directly in image classifi cation. Th ey proposed three 

texture measures that can be calculated from a TS and tested the resultant texture images in 

classifi cation. A comparison study conducted in a rural-urban fringe environment showed 

that the texture images extracted from TS performed poorer than the other texture extraction 

techniques such as GLCM and fi rst-order statistical transformation (Gong et al., 1992). Here, 

we apply TS directly in the FBC. However, the high dimension of 6561 is a computational 

burden. One way to simplify this is to combine the logical comparisons of ‘greater’ and ‘equal’ 

into one ‘greater and equal’ (Gong et al., 1992). Th is will dramatically reduce the total number 

of texture units to 256. Because the 8 directions involve double comparison (e.g., a ‘greater’ at 

45o from one pixel location is the ‘smaller’ at the other side of the pixel at 225o) we can avoid 

the double comparison by using any 4 consecutive directions. We used the 135o, 90o, 45o and 0o 

to save some computation time (fi gure 8.6). Th is is achieved through the following:

 (8.3)

Ui = 0 if v0 < vi

Ui = 1 otherwise
i = 1, 2, 3, 4

TU =  Ui · 2
i-1

4

i=1

Th e 4-direction encoding would include almost all the information of an 8-direction 

encoding but all pixel pairs are compared only once instead of twice. Th e only diff erence is 

at the left column of each pixel window where the 0 degree comparison will be lost with the 

4-direction method. Th e gain for the 4-direction comparison is the further reduction of the 
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total number of texture units from 38 to 34 (81) or 24 (16) depending on the number of logical 

comparisons between each pixel pair. Each value (TU) is a unique representation of spatial 

arrangement within one distance along 4 directions. Th e resulting 16 texture-unit image 

using the two logical comparison case is shown in fi gure 8.7. Th e sample image is a subset 

of IKONOS panchromatic image taken in December 2000 over the suburb of Xichang, 

Sichuan, China. A total of 9 subimages, each with a size of 128 by 128 representing a unique 

land use class, were selected from the IKONOS image and mosaiced for experiments.

Obviously the modifi ed version of TS will signifi cantly improve the computation effi  ciency 

when applied with the FBC algorithm in comparison to the original TS algorithm. Th e 

modifi ed TS approach (NTU=16) uses ⁄ of the computation time of that with 81 TUs; ⁄ of 

the computation time of that with 256 TUs; and only 1/410 of the computation time of the 
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Figure 8.6 – Th e target pixel compared with its 4 neighbors with 16 texture units.
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Figure 8.7 – Mosaic IKONOS panchromatic image (Left) with 9 sampled typical land-use classes in 

the suburban area of Xichang City, Sichuan, China. 1. Residential 2. Clear lake water 3. Lowland 

crop 4. Forest 5. Silt land 6. Fish pond 7. Terrace 8. Upland crop 9. Shrub. Right: the texture unit 

image.
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original TS approach (NTU=6561). In the meantime, we hope that the simplifi cation of the TS 

will not lose much power in characterizing textures in a pixel neighborhood.

To evaluate the eff ectiveness of the modifi ed TS algorithm, we tested some gray-level 

reduction algorithms that were applied to the raw IKONOS data. Although IKONOS 

images are encoded in 11 bits the actual eff ective data range for this area is only 371 (from 

102 to 472). To allow for direct comparison, we used 4 methods to reduce the gray-level range 

of the mosaic image to 256 (equivalent to 8 bits), 81 and 16 (equivalent to 4 bits). Because 

image classifi cation is a data generalization process, a preprocessing that reduces the data 

variability to some extent should not seriously infl uence the classifi cation accuracy. According 

to Narayanan et al. (2000), reducing the data down to 4 bits would still reserve more than 

90 of the information content. We applied 4  gray level reduction (GLR) schemes including 

the min-max linear compression (LC), gray level binning (BN), histogram equalization 

(HE) and piece-wise nonlinear compression (PC) ( Jensen, 1996). LC reduces gray levels 

linearly within the specifi ed minimum and maximum range. BN bins gray levels within every 

consecutive 27 of the original gray levels (211) into one gray level to achieve a 4 bit image. Th e 

resulting histogram is similar to that of LC. HE is designed in such a way that the histogram 

is theoretically adjusted to have the same frequency for each gray level. For the discrete case, 

this cannot be perfectly achieved but the histogram is fl attened ( Jensen, 1996, p. 150). Our 

HE algorithm fi rst equalizes the original histogram and then reduces the total number of 

gray-level values from the original image to a specifi ed smaller number such as 16, 81, and 256 

to achieve the gray-level reduction eff ect.

Th e problem that might occur with HE is that it favors high-occurrence gray values while 

low-occurrence consecutive gray values are combined into one. However, relatively low-

occurrence ones might contain useful information for classifi cation. PC was purposely 

applied in this study to reserve relatively low-occurrence parts while equalizing high-

occurrence parts of the original histogram. Th e original histogram was fi rst segmented into 

5 intervals according to its shape. Th e left tail and right tail having skewed distribution 

were empirically segmented into 2 individual intervals. LC was applied to each of the 2 tail 

segments while the remaining three middle intervals having relatively small-variance normal 

distributions were equalized. It was supposed to combine the strengths of both LC and HE, 

but decision on the cutting points for the two tail segments could be arbitrary. Experiments 

indicate that the eff ects of these GLR methods are not statistically diff erent from each other. 

When the GLR images are applied with FBC to classify the 9 land use classes, they all 

resulted in substantially poorer classifi cation accuracies than the use of TS algorithm with 

FBC (Xu et al., 2003).

In consideration of the subimage size used in the experiment, we chose one 64 by 64 pixel 

block as the training area for each land use class. Placing the training blocks was arbitrarily 

done as we consider each subimage a pure land-use class. To obtain a training histogram 

for each class with a specifi c window size, we compared the averaged histograms with 

frequencies in percentage generated from diff erent window sizes ranging from 5 by 5 to 65 by 

65 running through each particular training block. It was found that the average histogram 

of a specifi c land-use class does not vary with window size; in other words, the histogram 

running from varied window size was kept almost the same. Th is is logical since calculation 
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of frequency once from the whole training-block will be the same as generating frequency 

for each pixel once within a smaller window size and averaging them. Th is is however not 

quite intuitive. It suggests that we should choose a representative area for the particular class 

and generate a histogram from the whole training-block rather than calculating frequency 

tables of a specifi c window size and subsequently averaging them.
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Figure 8.8 – TS obtained from training for each land use class (a) and histograms for each land use 

class obtained with piece-wise compression (b).
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As for the TS approach, a histogram, i.e., the texture spectrum, was obtained for each class 

from the TU image (fi gure 8.8a). We notice the roughly symmetric behavior of the texture 

spectra. Our assumption was that the symmetric pattern was caused by the double counting 

in the use of 8 directions and it would disappear when only 4 directions were used. Th is was 

proven to be incorrect as the TS calculated from 4-direction texture unit images also shows 

symmetric patterns. We now suspect that it is due to the gray-level value comparison between 

the central pixel and its neighbors. Th e training histogram resulted from mosaiced image by 

using PC is shown in fi gure 8.8b.

For test sample selection, to avoid using the training pixels in accuracy assessment we chose 

a sample area of approximate 2000 pixels for each land-use subimage not overlapping with 

the training block. Test pixels were chosen at the center portion of each subimage to make 

sure that pixels subject to boundary eff ect are excluded from accuracy assessments. Th e same 

set of test pixels were used for all pixel window sizes tested in this study. Kappa coeffi  cient 

and conditional kappa were used to assess the overall classifi cation accuracy and per-class 

accuracy, respectively.

FBC was applied to the original image, gray-level reduced images created with diff erent 

reduction methods and with diff erent numbers of gray-level values, and texture-unit images 

created with the modifi ed TS algorithm. To examine the overall classifi cation results, we 

summarize the kappa coeffi  cients obtained from each type of images with 11 pixel window 

sizes. Th e 4 gray-level reduction algorithms were applied to reduce the original image gray-

level range from 371 to 256, 81 and 16, respectively. Shown in table 8.1 were only the accuracies 

obtained from the PC images with 16 gray levels. It is interesting to note that all the GLR 

methods produced similar results when compared among themselves and with those of the 

original image. Th e results seem to agree with the fi ndings in Narayanan et al. (2000) that a 4 

bit image does not lose much of the information for image classifi cation. Th e highest accuracy 

level for the original image is 0.74 while the best accuracies for the PC images range between 

0.71-0.73. For a total of nine land-use classes, we consider a kappa coeffi  cient of over 0.7 quite 

satisfactory. Th is may represent the optimistic situation as no boundary eff ects have been 

considered in this experiment. When examining kappa coeffi  cient against the window size, 

we see a similar pattern of better classifi cation accuracy with increasing window size and then 

levels off  at rather early stage for the PC image. We also compared the conditional kappa 

coeffi  cients for each individual class produced from diff erent gray-level images and found 

similar patterns for each class. In summary, GLR does not seem to aff ect the classifi cation 

accuracy by much even if the gray levels of the original image are reduced down to only 16.

Th e best accuracies achieved by the modifi ed TS methods were between 0.79 and 0.82. It is 

interesting to note here that the TS with only 16 texture units compared favorably to those TS 

with more TUs. Overall, they perform considerably better than the use of gray-level images. 

It seems clear that the inclusion of spatial arrangement information of gray-level values in a 

pixel neighborhood can considerably improve the performance of the FBC, as expected by 

Gong & Howarth (1992b). From table 8.1, we can also see that the gray-level images work 

better than the TS based methods at relatively smaller window sizes, but gradually reach their 

limits perhaps due to their inherent inability of considering spatial arrangement of pixels in a 

larger neighborhood.
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Figure 8.9 – Th e best classifi cation results obtained with: the fi rst column- the original image 371, 

the gray-level reduction (PC81, PC16); the second column- the modifi ed TS methods (TU256, TU81, 

TU16) all at a pixel window size of 65.
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Figure 8.9 shows the best classifi cation results for some of the classifi cation results with the 

FBC. It can be seen from all classifi cation results that pixels at the edges of diff erent land-

use images are mostly misclassifi ed. At the center of each land-use type, most classes are 

correctly classifi ed. For the gray-level images, the confusion is primarily located among the 

last three classes. Th ere is a tendency that large tracts of terrace and upland croplands are 

misclassifi ed into shrubs. For the modifi ed TS methods, the confusion seems to be caused by 

a misclassifi cation of terraces into upland crop and upland crop into lowland crop. Th erefore, 

the error patterns between the modifi ed TS and the gray-level images are diff erent.

It is interesting to note that the best accuracies are all associated with the largest window 

size. Because the subimage for each land-use type is 128 by 128 and the training block size 

was chosen to be 64 by 64, it is reasonable to expect that the best accuracies are obtained with 

the fi nal window size of 65 by 65. Optimal window size is related to the actual size of various 

land-use patches and is often chosen based on a compromise between land-use patch and 

boundary eff ects.

8.4 Summary and conclusions

To make a better use of high spatial-resolution images, such as IKONOS, Quickbird, 

Landsat ETM+ and IRS panchromatic images, one cannot rely on information of a single 

pixel. Even with multispectral data, one should not only consider the spectral refl ectance, 

but also explore and analyze the spatial relationship and context of neighboring pixels 

during the process of image classifi cation. We introduced here the use of a  frequency-based 

contextual classifi cation (FBC) with example applications to multispectral SPOT image, 

CASI image and samples of the IKONOS image. Gray-level (vector) reduction has proven 

Table 8.1 – Some of the classifi cation results measured by kappa coeffi  cients. Original image means 

all 371 gray-level values were used as entries in the frequency table; PC16 represents that the 371 

gray-level values were reduced to 16 levels with a piece-wise compression; TU256 represents the 

simplifi cation of the original logical comparison from 3 to 2 for all 8 directions in texture unit 

calculation; TU81 represents the use of only 4 directions for logical comparisons; TU16 represents the 

use of only 4 directions and reduction of the original 3 logical comparisons to 2.

Window
Size

Original
Image

PC16 TU256 TU81 TU16

 5 0.33 0.46 0.21 0.13 0.13
11 0.55 0.60 0.47 0.33 0.31
17 0.63 0.65 0.62 0.49 0.47
23 0.68 0.69 0.70 0.59 0.58
29 0.68 0.68 0.73 0.65 0.65
35 0.68 0.69 0.77 0.69 0.70
41 0.69 0.70 0.78 0.72 0.73
47 0.70 0.71 0.79 0.76 0.77
53 0.71 0.71 0.79 0.77 0.79
59 0.72 0.70 0.80 0.78 0.81
65 0.74 0.72 0.81 0.79 0.82
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to be an eff ective step in improving classifi cation effi  ciency although this advantage may be 

small as the performance of computing hardware improves constantly. More importantly, 

we demonstrated in this chapter that the FBC is not limited to handling solely gray level, 

cluster, and land cover class data that are of diff erent measurement scales. It can also be 

applied to texture statistics such as texture spectrum (TS) and gray-level co-occurrence 

matrix (GLCM) that are traditionally considered as intermediate results for texture feature 

extraction (Haralick, 1979; Wang & He, 1990). One of the advantages in working with such 

‘intermediate data’ is to their capability of preserving more discriminating power as compared 

to the texture measure counterparts that are further derived from those ‘intermediate results’. 

From our examples, we hope to conclude that

1   the FBC is a simple but powerful contextual image analysis tool for image classifi cation. 

Its two primary disadvantages are the lack of effi  ciency in handling high dimensional data 

and the tendency of causing classifi cation errors at borders of diff erent land use classes in 

an urban area, a problem commonly found in a kernel-based operator. Th ese have been 

overcome by the gray-level vector reduction algorithms proposed in Gong & Howarth 

(1992b), and by a simple thresholding during the classifi cation stage and post-classifi cation 

region growing (Gong, 1994).

2  For panchromatic high spatial resolution satellite images such as the IKONOS 1m data, 

FBC also demonstrated great potential. With 9 diff erent types of land-use patterns in a 

suburban area of China, the FBC can reach a kappa coeffi  cient of over 0.7.

3   A reduction in gray-level values to 16 from the original IKONOS image does not aff ect 

the accuracy of FBC. Not much diff erence in classifi cation accuracy is observed between 4 

diff erent gray-level reduction schemes.

4  Th e direct use of the texture spectrum (TS) in the FBC can considerably improve the 

land-use classifi cation accuracy over the use of gray-level images (Xu et al., 2003). Th e 

modifi ed TS algorithm reported here substantialy cut down the size of the texture 

spectrum to 256, 81 and 16 possible values and therefore improve classifi cation effi  ciency.

It is worthwhile to further test the modifi ed TS methods in combination with the FBC 

contextual algorithm in classifi cation of high resolution images. Expanding this strategy to 

the use of GLCM in place of the TS is also worthy of further study.



Chapter 9

Pixel-Based, Stratifi ed and Contextual Analysis 

of Hyperspectral Imagery

Freek D. van der Meer

9.1 Introduction

Imaging spectrometers acquire imagery in many, narrow and contiguous spectral bands with 

the aim of collecting ‘image radiance or refl ectance spectra’ that can be compared with fi eld 

or laboratory spectra of known materials. Imaging spectrometry has been widely used in 

geologic mapping, specifi cally in so-called  hydrothermal alteration systems. Th ese are areas 

where the composition of host rocks is altered through the circulation of hot fl uids giving 

rise to the formation of new mineral assemblages in a predefi ned order in (3D) space. Surface 

mineralogic information can be derived from imaging spectrometer data by comparing 

imaged refl ectance spectra of unknown composition to data from spectral libraries. Th is 

comparison is mostly done on a pixel-by-pixel basis. In general, a matching is done to 

express the similarity between the unknown pixel spectrum and known spectra from spectral 

libraries. As a result, in geology, information on surface mineralogy can be derived from 

imaging spectrometry data, which in turn can be incorporated into geologic models.

When light interacts with a mineral or rock, light of certain wavelengths is preferentially 

absorbed while at other wavelengths it is transmitted in the substance. Refl ectance, is defi ned 

as the ratio of the intensity of light refl ected from a sample to the intensity of the light 

incident on it.  Electronic transition and charge transfer processes (e.g., changes in energy 

states of electrons bound to atoms or molecules) associated with transition metal ions such 

as Fe, Ti, Cr, etc., determine largely the position of diagnostic absorption features in the 

visible- and near-infrared wavelength region of the spectra of minerals (Burns, 1993; Adams, 

1974; 1975). In addition,  vibrational processes in H2O and OH- (e.g., small displacements of 

the atoms about their resting positions) produce fundamental overtone absorptions in the 

mid- to shortwave infrared part of the spectrum (Hunt, 1977). Th e position, shape, depth, 

and width of these absorption features are controlled by the particular crystal structure in 

which the absorbing species is contained and by the chemical structure of the material. Th us, 

variables characterizing absorption features can be directly related to the chemistry and 

structure of the sample. Th e absorption depth is an indicator for the amount of the material 

causing the absorption present in a sample. Furthermore, the absorption-band depth is 

related to the grain or particle-size as the amount of light scattered and absorbed by a grain 

is dependent on grain size. A larger grain has a greater internal path where photons may be 

absorbed according to Beers Law. In smaller grains there are proportionally more surface 
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refl ections compared to internal photon path lengths, if multiple scattering dominates, the 

refl ectance decreases with increasing grain size.

Field and laboratory spectra have been used to relate absorption features to chemical 

composition of samples both the areas of soil science and mineralogy as well as in the area of 

vegetation science. For the analysis of hyperspectral image data there are several techniques 

available to surface composition (e.g., surface mineralogy) from a combination of absorption-

band position and depth. However, no such technique provides spatial information on the 

variation of absorption-band depth, position and shape despite the fact that these parameters 

are of vital use in quantitative surface compositional mapping.

Refl ectance spectra of minerals are dominated in the visible to near-infrared wavelength 

range by the presence or absence of transition metal ions (e.g., Fe, Cr, Co, Ni; Hunt, 

1977; Burns, 1993). Th e presence or absence of water and  hydroxyl, carbonate and sulphate 

determine the absorption features in the SWIR region. Th e hydroxyl is generally bound to 

Mg or Al. Th e water molecule (H2O) gives rise to overtones as seen in refl ectance spectra of 

H2O-bearing minerals. Th e fi rst overtones of the OH stretches occur at about 1.4 µm and the 

combinations of the H-O-H bend with the OH stretches are found near 1.9 µm. OH-groups 

commonly occurs in multiple crystallographic sites of a specifi c mineral and is typically 

attached to metal ions. Th us, there may be more than one OH feature. Th e combination 

metal-OH bend plus OH stretch occurs near 2.2 to 2.3 µm and is diagnostic of mineralogy. 

Carbonates also show diagnostic vibrational absorption bands due to the CO3
2- ion at 2.50-

2.55 µm, at 2.30-2.35 µm, and three weaker bands occur near 2.12-2.16 µm, 1.97-2.00 µm, and 

1.85-1.87 µm.

Quantitative estimates of mineralogical composition and chemical analysis on the basis 

of spectroscopic data has been demonstrated by many authors (e.g., Adams, 1975; Swayze 

& Clark, 1990). Adams (1975) and Cloutis et al. (1986) showed that the iron absorption 

bands near 1 and 2 µm shift as a function of Fe to Fe+Mg ratio. Similarly, King & Ridley 

(1987) showed this eff ect for olivines. Mustard (1992) showed that the Fe:(Fe+Mg) ratio 

can be estimated from refl ectance spectra. Duke (1994) found subtle shifts of the Al-OH 

absorption-band in muscovites with aluminium composition. As Al is substituted by Mg, 

the crystal becomes distorted causing slight changes in Al-OH bond lengths and thus shifts 

in the absorption-band position of the 2.2 µm absorption appear (Duke, 1994). Hence Duke 

(1994) found a way of quantifying the Al content of muscovites from the Al-OH absorption-

band position. Van der Meer (1994, 1995) demonstrated that refl ectance spectroscopy 

provides a measure for the ratio of calcite:dolomite in limestones. In soil science, refl ectance 

spectroscopy has been used to quantify soil parameters such as organic matter, total iron, 

exchangeable Ca and Mg, and Ph (Ben-Dor et al. 1997; Shepherd & Walsh, 2002). Recently, 

Kariuki et al. (2003) show that cation exchange capacity (CEC) can be estimated from 

refl ectance spectra. In vegetation sciences, refl ectance spectra have been used for years to 

estimate foliar biochemistry. Since the pioneering work of Curran (1989) on leaf biochemistry 

and Wessman et al. (1988) on remote sensing of canopy biochemistry many authors have 

demonstrated that leaf constituents (notably leaf pigments) can be quantitatively assessed 

from spectral data (e.g., Curran et al. 1992; Fourty et al. 1996). Examples of biochemicals 

that are estimated include leaf water (Bowman, 1989), chlorophyll (Lichtenthaler et al. 1996) 
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and nitrogen (Yoder & Pettigrew-Crosby 1995). Recently, Kokaly & Clark (1999) presented a 

model for determining the concentration of foliar components from refl ectance spectra using 

absorption band-depth analysis and multiple linear regression analysis to estimate a relation 

between refl ectance and the concentration of several components (nitrogen and cellulose). 

Curran et al. (2001) show another example of biochemical analysis of leaf refl ectance spectra 

using absorption-band position and depth analysis.

9.2 Pixel based analysis of hyperspectral imagery

.. Spectral matching techniques used for compositional mapping

Th ere are various techniques to process hyperspectral imagery in order to obtain surface 

compositional information on a pixel-by-pixel basis for the entire image (see Van der Meer 

et al., 2001 for a review). Techniques that specifi cally use absorption band position and depth 

include (1) the  Relative Absorption Band-Depth (RBD) approach of Crowley et al. (1989), 

(2) the  Spectral Feature Fitting (SFF) technique of Clark et al. (1990a) and (3) the Tricorder 

(Crowley & Swayze 1995) and Tetracorder (Clark et al., 2003) algorithms developed at 

the USGS spectral laboratory. Th ese techniques work on so-called continuum removed 

refl ectance spectra (fi gure 9.1), thus acknowledging that the absorption in a spectrum has 

two components: a continuum and individual features. Th e continuum or background is the 

overall albedo of the refl ectance curve. Removing this eff ectively scales the spectra to 100 

when the spectral curve approaches the continuum. Mathematically this can be done as 

follows (Clark et al. 2003)

Lc (w) = L (w) / C1 (w) and Oc (w) = O (w) / C0 (w)  (9.1)

where L(w) is the library spectrum as a function of wavelength, w, O is the observed 

spectrum, Cl is the continuum for the library spectrum, Co is the continuum for the observed 

spectrum, Lc is the continuum-removed library spectrum, and Oc is the continuum-removed 

observed spectrum.

Crowley et al. (1989) developed a method of mineral mapping from imaging spectrometer 

using Relative Absorption Band-Depth Images (RBD) generated directly from radiance data. 

In essence, RBD images provide a local continuum correction removing any small channel to 

channel radiometric off sets, as well as variable atmospheric absorption and solar irradiance 

drop off  for each pixel in the data set. To produce a RBD image, several data channels from 

both absorption band shoulders are summed and then divided by the sum of several channels 

from the absorption band minimum. Th e resulting absorption band-depth image gives the 

depth of an absorption feature relative to the local continuum, which can be used to identify 

pixels having stronger absorption bands indicating that these may represent a certain mineral.

Spectral feature fi tting (embedded in the ENVI software, Clark et al., 1990a) uses continuum 

removed pixel spectra, which are compared to continuum reference spectra of known 

mineralogy. A least-squares fi t is calculated band by band between each reference end-

member and the unknown (continuum removed) pixel spectra. A ‘Scale’ image is produced 

for each endmember selected for analysis by fi rst subtracting the continuum-removed 



156 – F.D. van der Meer

spectra from one, thus inverting them and making the continuum zero. A large scale-

factor is equivalent to a deep spectral feature, while a small scaling factor indicates a weak 

spectral feature. A least-squares-fi t is then calculated band-by-band between each reference 

endmember and the unknown spectrum. Th e total root-mean-square (RMS) error is used to 

form an RMS error image for each endmember. Th e ratio of the scale image and the RMS 

image provides a ‘Fit’ image that is a measure of how well the unknown spectrum matches 

the reference spectrum on a pixel-by-pixel basis.

Th e (Tricorder and its successor) Tetracorder (Clark et al. 2003) uses spectral matching 

algorithms carried out in a two step process. First, the local spectral slope (the ‘continuum’) 

is estimated and removed both from reference and observed spectra. Next, the identifi cation 

of materials from their spectra is constrained by (1) the goodness of fi t of a spectral feature 

to a reference, (2) refl ectance level, (3) continuum slope, and (4) presence or absence of key 

ancillary spectral features. Th e Tetracorder uses these reference continuum-removed-spectral 

features to compute a weighted fi t between unknown spectra and known library spectra. By 

means of an expert system approach, surface compositional information is derived and results 

are validated.

Th ese mapping methods described all produce validated surface compositional information 

(mostly mineralogical maps); however, they do not provide information on the absorption 

band position, depth and asymmetry on a pixel by pixel basis although these parameters are 

used in the matching performed. Since absorption band parameters are of importance to 

quantitative refl ectance spectroscopy, there are attempts made to develop linear estimation 

methods to derive absorption-band parameters from hyperspectral image data.

Another spectral matching technique is the  Cross correlogram spectral matching (CCSM; 

Van der Meer & Bakker 1997; 1998); an approach toward mineral mapping from imaging 

spectrometer data using the cross correlogram of pixel and reference spectra. A cross 

correlogram is constructed by calculating the cross correlation at diff erent match positions, 

m, between a test spectrum (i.e., a pixel spectrum) and a reference spectrum (i.e., a laboratory 

mineral spectrum or a pixel spectrum known to represent a mineral of interest) by shifting 

the reference spectrum over subsequent channel positions by

 (9.2)Rm = –––————————————–––
n  r t -  r t

√[n  r - (  r)
2] [n  t - (  t)

2]2 2

where Rm is the cross correlation at match position m, t is the test spectrum,  is the 

reference spectrum, n is the number of overlapping positions (spectral bands), and m the 

match position. Th e statistical signifi cance of the cross correlation coeffi  cient can be assessed 

by the a student’s t-test and the skewness can be calculated as an estimator of the goodness-

of-fi t. Th e cross correlogram for a perfectly matching reference and test spectrum is a 

parabola around the central matching number (m=0) with a peak correlation of 1. Deviations 

from this shape indicate a diff erent surface mineralogy. Mineral mapping on a pixel by 

pixel basis is achieved by extracting three parameters from the cross correlograms and 

combining these into a statistical estimate of the goodness of fi t of the two spectra compared: 

the correlation coeffi  cient at match position zero, the moment of skewness (based on the 
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correlation diff erences between match numbers of equal but reversed signs, e.g., m=4 and 

m=-4), and the signifi cance (based on a student t-test testing the validity of the correlation 

coeffi  cient at m=0). In order to evaluate the surface mineralogy maps a root mean square 

error assessment procedure is proposed in which the error is calculated from the diff erence 

between the calculated pixel cross correlogram and the ideal cross correlogram calculated for 

the reference as

 (9.3)RMS =   —————––
O (RM - R'M)

N

M

√

where RM is the pixel cross correlation at match position m, R'M is the reference cross 

correlation at match position m, N is the number of match positions, M is the match number.

Th e most used mapping method in hyperspectral remote sensing is the spectral angle mapper. 

Th e  Spectral Angle Mapper calculates the spectral similarity between a test refl ectance 

spectrum and a reference refl ectance spectrum assuming that the data is correctly calibrated 

to apparent refl ectance with dark current and path radiance removed. Th e spectral similarity 

between the test (or pixel) spectrum, t, and the reference (or laboratory) spectrum, r, is 

expressed in terms of the average angle, , between the two spectra as calculated for each 

channel, i, as

 (9.4)

  tiri

 = cos-1   —————————

  ti   ri

n

i=1

√
2

n n

i=1

2

i=1

In this approach, the spectra are treated as vectors in a space with dimensionality equal to the 

number of bands, n. Th e outcome of the spectra angle mapping for each pixel is an angular 

diff erence measured in radians ranging from zero to /2 which gives a qualitative estimate of 

the presence of absorption features which can be related to mineralogy. Th e main problem 

using the spectral angle mapper is the appropriate selection of the threshold to classify the 

derived rule images. Since the angle is nor a physical nor a statistical measure, there is now 

statistically/physically sound approach to do so.

Table 9.1 – Hydrothermal alterations as they occur at Cuprite and associated main mineral phases 

(key minerals indicative for the phase are indicated in italics).

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

Propylitic Potassic Argillic Sericitic Advanced 
argillic

Low-
temperature

advanced

K-feldspar K-feldspar Kaolinite
ordered

Kaolinite Pyrophyllite Buddingtonite

Chlorite Sericite Illite/smectite Dickite Alunite Kaolinite
Carbonate Montmorillonite Gypsum Sericite Alunite
Montmorillonite
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Here we demonstrate the use of this technique by applying this to AVIRIS data acquired at 

Cuprite (fi gure 9.1). Th e Cuprite mining site (Albers & Stewart, 1972; Abrams et al., 1977) 

is an area of extensive hydrothermal alteration related to early Miocene volcanism during 

which dacite and andesite fl ows were extruded and hot, acidic brines began circulating 

through the series of rhyolitic basalts, rhyolitic welded ash fl ows and air fall tuff s. Silicifi ed 

rocks form a large irregular patch extending from the middle to the south end of the area. 

Th e silicifi ed core represents the most intensely altered rocks at Cuprite containing quartz, 

calcite and minor alunite and kaolinite. Opalized rocks contain abundant opal and as much 

as 30 alunite and kaolinite. Locally, an interval of soft, poorly exposed material mapped as 

argillized rock separates fresh rock from opalized rock. In the argillized rocks, plagioclase is 

altered to kaolinite, and glass is altered to opal and varying amounts of montmorillonite and 

kaolinite.
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Figure 9.1 – Location of the study area, hydrothermal alteration map (after Albers & Stewart 1972) 

and (inset) AVIRIS image with the mapped area outlined.
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In fi gure 9.2 the target AVIRIS spectra are shown for the typical alteration mineral 

characterizing the system. Figure 9.3 shows the mineralogical assemblages whereas table 9.1 

summarizes the key alteration zones and associated key minerals. For simplicity we use in our 

analysis the minerals kaolinite, alunite and the rare feldspar buddingtonite. Note that alunite 

is the pathfi nder mineral for gold deposits associated with the high temperature alteration. 

We use the CCSM spectral matching algorithm. As an example, the skewness, signifi cance 

and correlation image are shown for kaolinite as reference in fi gure 9.4. Th e fi nal alteration 

maps are shown in fi gure 9.5. Th e distribution of the alteration assemblages as shown in 

fi gure 9.5 is characteristic for a fossilized hot-spring deposit, which are often mined for 

gold. Th e circular distribution of the mineral zones, demonstrates that alteration occurred 

along a central vent with the lateral mineral zoning controlled by a decrease of acidity and 

temperature.

Some problems related to spectral matching techniques are illustrated in fi gure 9.6. Here we 

calculated the correlation between a calcite laboratory spectrum (from the JPL 160 mineral 

library available in ENVI) and a dolomite spectrum and an iron rich dolomite spectrum. We 

calculate the correlation coeffi  cient for parts of the spectrum starting with the fi rst 800 (of a 

total of 826 channels of the Beckman spectrometer) channels and subsequently diminishing 

this number by steps of 50 channels such that at last we only calculate the correlation between 

the 50 channels in the long wavelength portion of the SWIR. For the calcite vs dolomite 

spectrum we can notice that the correlation is high (0.93) and diminishing to 0.84 when using 

only the last 50 channels of the spectrometer. Th is can be explained by the fact that calcite 

and dolomite have an absorption band around 2.3 micron which changes only from 2.35 to 

2.3 micron for calcite versus dolomite. Hence the signifi cant diff erence in the two spectra 

is in this part of the spectrum. In fact the graph tells us that including other wavelengths 

only adversely infl uences the matching result. Th e same can be observed when looking at the 

correlation graph of the calcite versus the iron-rich dolomite spectrum. However this graph 

shows various correlation maxima and minima because the shape of the graphs are similar 
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Figure 9.2 – AVIRIS spectra from target minerals (right) and correlograms for a kaolinite reference 

(left).
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in parts of the spectrum but diff er, particularly in the visible part of the spectrum. Hence 

including irrelevant information damages severely the matching result. Another point arises 

in thresholding the correlation to perform a classifi cation. How to objectively determine a 

threshold? Th is is a particular problem when using the SAM technique because the angles 

will vary non-linearly with the percent spectrum mixed into a mixture.

.. Absorption band parameter estimates

Field or laboratory refl ectance spectra have been used to derive compositional information 

on samples. Usually this involves a multiple-linear regression of absorption-band parameters 

and chemical composition. Th e following  absorption-band parameters calculated from 

continuum removed spectra (fi gure 9.7) are often used: (1) the absorption-band position, 

Propylitic Potassic Argillic Sericitic
(phyllic)

Advanced
argillic

Low-temp
advanced
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Mineral
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Figure 9.3 – Major alteration zones characterizing the high sulfi dation hydrothermal alteration 

system found at Cuprite and the mineral assemblages that are commonly found in these zones.
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(2) the absorption-band depth and (3) the absorption-band asymmetry. Th e depth of an 

absorption band, D, can be defi ned relative to the continuum, Rc, as

 (9.5)D = 1 - –––
Rb

Rc

where Rb is the refl ectance at the band bottom, and Rc is the refl ectance of the continuum at 

the same wavelength as Rb (Green & Graig 1985). Th ese Hull quotient spectra (also referred 

to as continuum removed spectra) are used to characterize absorption features, known to 

be attributed to a certain mineral of interest, in terms of their position, depth, width, and 

Correlation at m=0

Skewness of the correlogram

0

1

62
30

Figure 9.4 – Skewness, signifi cance and correlation at match position 0 for kaolinite as reference.
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asymmetry. Th e absorption band position, , is defi ned as the band having the minimum 

refl ectance value over the wavelength range of the absorption feature. Th e relative depth, 

D, of the absorption feature is defi ned as the refl ectance value at the shoulders minus the 

refl ectance value at the absorption band minimum. Th e asymmetry factor, S, of the absorption 

feature is defi ned as

S = Aleft / Aright  (9.6)

where Aleft is the area of the absorption from starting point to maximum point and the Aright 

is the area of the absorption from maximum absorption point to the end point (shoulder) 

of the absorption. Values for S range from -1.0 to infi nity where S equals 0 for a symmetric 

absorption feature. Features in which the area on the left-hand side is greater than the area 

on the right-hand side (i.e., absorption features skewed to longer wavelength) will result in 

asymmetry values greater than 1. Features in which the area on the left-hand side is smaller 

than the area on the right-hand side (i.e., absorption features skewed to shorter wavelength) 

will result in asymmetry values between 0 and 1. Okada & Iwashita (1992) produced 

waveform characteristics on hyperspectral imagery, however the algorithms were not very 

well documented.

Th e absorption band parameter defi nition as discussed above assumes nearly continuous 

(contiguous) spectral data, whereas imaging spectrometers acquire data in a large number 

of discrete spectral bands. Th e band center wavelength position is usually used for further 

calculations, thus providing spectral measurements on a discrete number of wavelength 

positions characterizing an absorption feature. To accommodate this, a simple linear method 

is proposed to calculate the absorption feature parameters from image data. Figure 9.8 

graphically explains the procedure followed.

First for the absorption feature of interest the image bands are determined that would serve 

as the shoulders of the absorption feature. By defi nition, there is a short wavelength shoulder 

(shoulder 2, denoted S2 in fi gure 9.8) and a long wavelength shoulder (shoulder 1, denoted 

Kaolinite Alunite Buddingtonite
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Figure 9.5 – Final alteration maps at Cuprite based on CCSM.
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S1 in fi gure 9.8). Next, the data are continuum removed using the mentioned shoulders as 

starting and ending points. Subsequently, two bands are selected as the absorption points 

which will be used in the interpolation (points A1 and A2 in fi gure 9.8). Th en, the coeffi  cients 

C1 and C2 are calculated as

C1 = √ (depth1)
2 + (S1 - A1)

2  (9.7)
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Figure 9.6 – Correlation between calcite (reference) and dolomite (target 1) and iron-rich dolomite 

(target 2). See text for discussion.
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Figure 9.7 – Defi nition of the continuum and continuum removal and subsequent defi nition of 

absorption feature characteristics.
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and

C2 = √ (depth2)
2 + (S2 - A2)

2  (9.8)

From this, the interpolated wavelength position (e.g., the wavelength of maximum 

absorption) can be found by interpolating between the shoulders and absorption points in 

the spectrum as

 (9.9)
C1

C1 + C2

Absorption_wavelength = -  ––––––– · (A1 - A2)  + A1

or

 (9.10)
C1

C1 + C2

Absorption_wavelength = -  ––––––– · (A1 - A2)  + A1

 

Th e associated absorption-band depth is derived as

 (9.11)
S1 - absorption_wavelength

S1 - A1

Absorption_depth =  –––––––––––––––––––––––  · depth1

or

 (9.12)
absorption_wavelength - S2

A2 - S2

Absorption_depth =  –––––––––––––––––––––––  · depth2

Th e asymmetry factor of the absorption feature is calculated as

Asymmetry = A - B = (absorption_wavelength - S2) - (S1 - absorption_wavelength)  (9.13)

Th is operation returns 0 for a perfect symmetric absorption feature, a negative value for a 

absorption feature that is asymmetric and skewed toward the short wavelength, a positive 

value if the absorption feature is skewed toward the longer wavelength.

As input to the absorption-band mapping approach, continuum removed spectra were used 

on a selected portion of the wavelength spectrum where the absorption band of interest is 

found. In this fi rst case study, focus was on clay mineral absorption features in the SWIR 

around 2.20 µm and carbonate absorption features in the SWIR around 2.30 µm. Two bands 

on the shoulders of the feature were selected to perform the continuum removal. For the 

Al-OH clay mineral absorption features, AVIRIS band 178 centered at 2.0509 µm (shoulder 

2) and AVIRIS band 199 centered at 2.2606 µm (shoulder 1) were used. Th e two absorption 

points used for the interpolation were AVIRIS band 184 centered at 2.1110µm (absorption 

point 2) and AVIRIS band 196 centered at 2.2307 µm (absorption point 1) for the Al-OH 

feature.
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Figure 9.9 – Derived absorption feature parameters for the Al-OH and Ca absorption band: (A) 

position of maximum absorption wavelength for (A) AL-OH and (B) Ca, depth of the absorption 

feature (in  refl ectance relative to the continuum) for (C) Al-OH and (D) Ca, asymmetry of the 

absorption feature for (E) Al-OH and (F) Ca (++ = strongly skewed to longer wavelength, +/0 

=weakly skewed to longer wavelength, 0/-= weakly skewed to shorter wavelength, --= strongly 

skewed to shorter wavelength). Please consult the enclosed CDROM for a full colour version.
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Th e resulting images are shown in fi gure 9.9 (Al-OH absorption feature parameters). 

Th ese images can be used to (1) relate absorption feature parameters to measures of mineral 

chemistry and (2) to describe the hydrothermal alteration system in terms of surface 

composition (mineralogy) and alteration intensity. In particular the mineralogy as expressed 

in the AL-OH absorption parameter estimates may be of use. Table 9.1 summarizes the 

key mineral groups for each of the alteration phases theoretically to be found in this high 

sulfi dation alteration system. Th e wavelength position of the Al-OH (fi gure 9.9) can be 

interpreted in terms of alteration phases. Short wavelength Al-OH absorption is indicative 

for the presence of buddingtonite and alunite indicating relative high alteration (low 

temperature advanced and advanced argillic alteration phases). Intermediate wavelength 

Al-OH absorption is confi ned to the argillic alteration phases (kaolinite, gypsum), whereas 

the potassic alteration phase (dominated by montmorillonite) and the propylitic alteration 

phase is dominated by chlorite thus giving relatively long wavelength Al-OH features. Th e 

absorption band depth of the Al-OH feature increases with intensity of the hydrothermal 

alteration both because of the increase in volume of alteration minerals as well as because 

of the increase in depth of mineral related absorption bands. Th e advanced argillic (and low 

temperature advanced alteration) phase, dominated by buddingtonite and alunite, show 

intense (deep) absorption features, whereas the argillic and the potassic and propylitic 

alteration phase mineral generally show less pronounced absorption features. Th e use of the 

asymmetry feature for mapping and analysis of the Cuprite data is less straightforward. In 

principle, by the defi nition of the asymmetry, the minerals with positive asymmetry values 

have Al-OH feature skewed to longer wavelength and those with a negative asymmetry 

value correspond to absorption features skewed to shorter wavelength. Typical minerals that 

exhibit a negative asymmetry value are montmorillonite, buddingtonite and chlorite. Alunite 

has a rather symmetric Al-OH absorption feature (asymmetry value of 0), whereas kaolinite, 

jarosite and in particular gypsum would have a positive asymmetry (because their Al-OH 

absorption features are skewed towards longer wavelength).

9.3 Stratifi ed analysis of hyperspectral imagery

An alternative approach to thematic analysis of hyperspectral data is stratifi ed analysis. Th e 

aim would be to stratify the data on known thematic data layers prior to analytical approaches 

being applied to the data. In many cases, fi eld or thematic map data is available. Th is data can 

thus be used for data processing. One can imagine clustering a data set on mapping units 

and start analysing within these natural boundaries. Furthermore various data products from 

hyperspectral data sets can be integrated using statistical techniques.

As example we here look at Probe-1 (also known as HyMAP) from an area in California 

(Santa Barbara, fi gure 9.10) known for the presence of oil/gas seeps. Th ese seeps can be 

detected in hyperspectral imagery either through (1) anomalous spectral behaviour of the 

vegetation or (2) through mineral alteration in the soil. Hence we fi rst separated the data 

into a vegetation and a soil component by simply masking the data using the NDVI. Next 

we stratifi ed the data on the known geological units since these not only aff ect the soil type 

and hence the vegetation type but there also is a strong link between seepage and lithology. 
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Th e main oil reservoir rock outcrops at some areas thus allowing seepage of oil to the surface. 

Seeps are also more likely to appear in gas form when sitting close to the host reservoir rock.

When evaluating the imaged area in terms of vegetation properties in relation to the 

lithology we can clearly see the necessity for performing a stratifi ed analysis. We calculated 

the following parameters:

•   the NDVI

•   the carter stress ratio of band 695 nm. Over band 420 nm.

•   the carter stress ratio of band 695 nm. Over band 760 nm.

•   and the red edge infl ection point

Th e so-called Carter ratio’s (Carter, 1994) are band ratio’s that are sensitive to vegetation 

stress. We computed these two ratio’s, 695/420 and 695/760, on a vegetation masked image 

(that is on pixels that have a NDVI value of greater than 0.5). Similarly we calculated the  red 

edge infl exion point. Th e red edge wavelength is found by fi rst calculating the refl ectance at 

the infl exion point (Rre)

Rre = (R670 + R780) / 2  (9.14)

And next fi nding the accompanying red edge wavelength ( re) by

62
30

Figure 9.10 – Location map and fl ightlines for the Santa Barbara area. Please consult the enclosed 

CDROM for a full colour version.
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re = 700 + 40 · ((Rre - R700) / (R740 - R700))  (9.15)

where R670, R700, R740 and R780 are the refl ectance values at 670, 700, 740 and 780 nm. 

wavelength, respectively. In table 9.2 we summarize the results of these calculations for a 

number of key lithologies in the imaged area. Th e Monterey formation is the oil-producing 

Carter stress index 695 nm./420m.

Carter stress index 695 nm./760m.

NDVI

Geology
oil & Gas seeps
695/760 nm. <0.2
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Figure 9.11 – Vegetation stress maps for the Santa Barbara area. From top to bottom the Carter 

695/420 ratio, the Carter 695/760 ratio, the vegetation red edge, and the NDVI. Th e images are 

annotated with the geologic vectors and the known active oil and gas seeps. Please consult the 

enclosed CDROM for a full colour version.



170 – F.D. van der Meer

unit. We summarize the results of these calculations for a number of key lithologies (fi gure 

9.12) in the imaged area. Th e Monterey formation is the oil producing unit, the repetto 

sandstone is the reservoir unit and the Sisquoc shale and Sespe red sandstones are other 

key lithologies in the area. Evaluating the statistics of the four vegetation indices shows that 

there is a strong relationship between these parameters and the lithologies. Th us baselines for 

each lithology need to be established prior to analysing the scene. In fact, stratifi cation of the 

image on the lithology is the key approach here.

Hence we fi rst separated the data into a vegetation and a soil component by simply masking 

the data using the NDVI. Next we stratifi ed the data on the known geological units since 

these not only aff ect the soil type and hence the vegetation type but there also is a strong 

link between seepage and lithology. Th e main oil reservoir rock at some areas outcrops thus 

allowing seepage of oil to the surface. Seeps are also more likely to appear in gas form when 

sitting close to the host reservoir rock.

Th e main derivative of interest for gas seepage in the vegetated areas is the red edge 

position, which can be regarded as an indicator of health status of the vegetation. In the 

soil component we singled out various mineral maps (using spectral matching techniques 
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Figure 9.12 – Map showing the relationship between seeps and key stratigraphic horizons and 

petroleum geology of the Santa Barbara area. Please consult the enclosed CDROM for a full colour 

version.

Table 9.2 – Typical values of vegetation parameters for selected lithologies in the Santa Barbara 

imaged area.

Lithology NDVI Red edge* Carter 695/760 Carter 695/420

Repetto Sandstone 0.2-0.3 725 (710-736)  <0.2  0.65-1.25
Monterey Mud-siltstone 0.6-0.8 712 (700-725)  0.3-0.5  0.50-0.75
Sisquoc shale 0.5-0.8 715 (710-735)  0.2-0.3  0.99-1.2
Sespe red sandstone 0.3-0.5 721 (708-728)  0.1-0.3  1.25-1.5

* mean (min-max)
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described earlier) in particular iron oxides and enrichment in kaolinite and carbonate which 

are indicative for seepage. Th ese data layers for each unit were integrated using statistical 

approaches.

Th e resulting spatial patterns were integrated with known oil and gas seeps using a  spatial 

data integration approach (SDI). Th e basic proposition, mathematical hypotheses which 

we want to test, in this study is the presence or absence of an undiscovered oil/gas reservoir 

formulated as

Fp: “p contains an undiscovered oil/gas reservoir”  (9.16)

Th e probabilistic theory embedded in the favourability function allows to address this 

proposition. Th e favourability function method requires the two assumptions that: (i) past 

occurrences of a given type (i.e., a clearly identifi ed type of process) can be characterized 

by sets of layers of supporting spatial data, and that (ii) new discoveries of the same type 

will occur in the future under similar circumstances. Th at is, the present should be able to 

predict the future. Th e mathematical framework of the Bayesian implementation of the 

SDI is embedded in the work of Chung & Fabbri (1993). Consider a probability at any A, 

prob{Fp}, for the proposition Fp. Th is prior probability, a pixel p will contain a future reservoir, 

is obtained by:

prob {Fp} = size of F / size of A  (9.17)

where F denotes the unknown areas which will be reservoirs within A and ‘size of B’ represent 

the size of the surface area covered by any subarea B in A. Prob {Fp} has the same value for 

all p. Th e purpose of the modeling is to see how the probability at p will be changed as we 

observe the m pixel values at p. At pixel p, the pixel value vl(p) of the lth layer is c1 which is 

one of the nl classes (map units), {1, 2, ..., nl}. Consider a set of all pixels whose value in the 

fi rst, layer is cl. Th e set is the thematic class in the 1st layer whose pixel value is cl. Th e set is 

denoted by Alcl and it is one of the non-overlapping nl sub-areas {A11, A12, ..., A1nl} in the 1st 

layer. Assume that the occurrences at each pixel p can be expressed as the joint conditional 

probability

prob {Fp|c1, c2, ..., cm}  (9.18)

that p will be a future undiscovered oil/gas reservoir assuming that the p contains the m 

values, (c1,c2...cm). When prob{Fp|cc, c2...cm} is approximately similar to Prob{Fp} we can state 

that the pixel values at the p, (c1,c2...cm) do not add any useful information whether the pixel 

is an undiscovered reservoir. However, if

prob {Fp|c1, c2,..., cm} >> prob {Fp}  (9.19)

or

prob {Fp |c1, c2, ..., cm} << prob {Fp}  (9.20)
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then the pixel values, (c1, c2,  ..., cm) provide very signifi cant information and they are highly 

correlated either positively or negatively with occurrences. We assume that cl, will contain an 

undiscovered  oil/gas reservoir and we assume that the cl, ..., cm are conditionally independent 

given the condition Fp, (p will contain an undiscovered oil/gas reservoir). Hence, under the 

above conditional independence assumption, the joint conditional probability becomes

 (9.21)= ––––––––––––––– prob {Fp} –––––––––– ... ––––––––––
prob {cl}...prob {cm}

prob {cl,...,cm}

prob {Fp|cl}

prob {Fp}

prob {Fp|cm}

prob {Fp}

Under the conditional independence assumption, this joint conditional probability can 

be expressed in terms of three components. Th e fi rst component, the ratio of prob{c1}... 

prob{cm} and prob{c1, ..., cm} consists of the probabilities related to the input spatial data. 

Th e second component, the prior probability prob{Fp} is the probability that a pixel p will be 

an undiscovered reservoir prior to having any evidence. Th e third component consists of m 

factors and each factor, the ratio of bivariate conditional probability prob{Fp|ck} and the prior 

probability prob{Fp} indicates a contribution of each pixel value to undiscovered reservoirs.

In fi gure 9.13 we provide and interpretation of the patterns observed. Particularly the 

predicted probability map for the mineral alteration provides spectacular results. Th e image 

clearly shows an elliptical pattern of high probability values around the actual seep location 

forming what appears to be a halo. In the center of the halo, low values give the appearance 

of a clogged area similar to the resulting patterns described in edge-leakage. Th e vegetation 

stress analysis in this area did reveal less information, which is due to the fact that little pure 

vegetation pixels are found and that large parts over the anomalous area are relatively devoid 

of vegetation.

A B C

D  E

62
30

Figure 9.13 – Results and interpretation. False color image of probe bands 16, 9, 4 in RGB with 

seeps (A), SDI probability minerals with interpretation of the anomaly (B) SDI probability 

vegetation (C), geological map (D) and SDI probability minerals with annotation. All probability 

maps display P>0.8.
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9.4 Contextual analysis of hyperspectral imagery

Stratifi ed approaches are one step in the direction of using prior and thematic information 

in the analysis of hyperspectral data sets. A next step would be to include spatial and 

contextual information. Th ese pixel-based methods have in common that they yield surface 

compositional information (e.g., in geologic applications this is often surface mineralogy) 

that has to be further translated into a geologic model (which involves understanding the 

spatial context of surface mineralogy). Furthermore, these models bypass the common 

notion in geology that spatial (contextual) information provides valuable information to 

infer the transitional nature of geologic context. In other words, fi eld geologists working 

in, for example, hydrothermal alteration systems use mineral paragenesis and the mineral 

assemblage in their mapping. When identifying a certain suite of minerals at a location not 

only do they know in which part of the alteration system they spatially are, but they can also 

infer from this information which mineralogic transition they are about to discover when 

progressing through the terrain. Hence, not only do they use information on the surface 

mineralogy, but they also use neighborhood information to unravel the geologic history and 

alteration system of an area.

When applying the SAM algorithm to the hyperspectral data we often get poor results. 

Furthermore, we often have diffi  culties in selecting appropriate thresholds to classify the 

image. Th e results of the absorption feature mapping for carbonate features and OH features 

as shown earlier provide more direct information which allows seperation of spectral features 

that are partially overlapping (non distinct) such as the carbonate features. However, to 

include spatial and contextual information we need to develop more complex data models. In 

the remainder of this chapter, we look an ASTER scene from a sedimentary area in Oman. 

Th e area is dominated by limestone and dolomite and to a lesser extent by sandstones and 

marls. Visual and spectral investigations of the scene allow the experience geologic remote 

sensor to recognize these lithologies (fi gure 9.14). However, to include this knowledge 

into image processing strategies is diffi  cult, but challenging. To allow for the inclusion of 

contextual information into the process of imaging spectrometry data analysis, in 2000 (Van 

der Meer, 2000) an inversion method was presented. Th is method uses a geologic-mineralogic 

model of the imaged area and inverts the imaging spectrometry data to that model. In an 

iterative way, the geologic-mineralogic model is adjusted to the observed spectral data. Th e 

inversion method theoretically showed how contextual information could be used in imaging 

spectrometry studies and how surface compositional information could be used as input 

rather than as output of a remote sensing-based model (Van der Meer, 2000).

Assuming that a set of physical measurements {m} can be inverted to their resulting variables 

{x} if the underlying physical process is known and the following relationship is assumed

m = (x) + n  (9.22)

where n is the sensor noise. Th e direct inversion in the presence of (random) noise results in

x = (m)-1 + n  (9.23)
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In Van der Meer (2000) a Bayesian approach has been discussed for data inversion using an 

artifi cial neural network (ANN; following Yang et al., 1999).

Th e input of geologic knowledge into the process will be described in the following 

subsections. Th e mismatch of the inversion model is defi ned as the diff erence between the 

physical measurements (xi) and the estimated geologic-physical model  (xi), hence ( (xi)- 
(xi)). Th e neural network is used to iteratively reduce this mismatch propagating the geologic 

model through the imaging spectrometry data.

Th e input layer of the neural network is comprised of one node, i, for each discriminating 

variable, while the one or more hidden nodes, j, each contain a user-defi ned number of units. 

Th e output layer contains one node, k, for each geologic class. Th e ANN we use (see also 

Yang et al., 1999) employs a classical back-propagation algorithm where a desired output is 

defi ned the on basis of training (geologic) input data (classes) and for each k class the desired 

output vector dk is defi ned. Each training pixel is propagated through the net and the derived 

output vector ok is found which in turn is used to fi nd the error term  which is based on the 

diff erence between the true and expected output vectors. Th e weights between these layers, 

wji and wkj are adjusted after each iteration by

 (9.24)wkj = LR  (dk - ok) –– f (S)| skhj

d

ds

p

p=1

and

 (9.25)wji = LR    ––  f (S)| sk (dk - ok) ––  f (S)| sk wkj  i

d

dS

p

p=1

d

dSk

respectively, where LR is the learning rate (used to control the speed of convergence), f is the 

sigmoid activation function conveniently defi ned as f(S)=1/(1+e-s), pi are the i input patterns 

i=1...P assuming a set of pi vector-pairs, (x1, y1), (x2, y2), ..., (xp,  yp), which are examples of a 

functional mapping y= (x) : x  RN, y  RN. We train the network so that it will approximate 

0=y'= '(x) by fi nding a set of weights that fi ts a number of known observations. Th e iteration 

of the network is repeated until the error  does not exceed a pre-defi ned threshold value.

A fl exible iterative geophysical inversion can be found with the help of a neural network 

based on a Bayesian approach (Van der Meer, 2000). Th is neural network allows incorporating 

ground truth information and neighborhood information. We aim at fi nding the set of 

variable {x} given the set of measurements {m} that maximize the conditional posterior 

probability f({x}|{m}). Bayes’s basic equation states that the joint probability that both events 

A and B occur is equal to the probability that B will occur given that A has already occurred, 

times the probability that A will occur f(A, B)=f(B|A)f(B) where f(B|A) is the conditional 

probability expressing the probability that B will occur given A has already occurred.

Translating this to our specifi c case we can state that in case of an all-inclusive number of 

independent events xi that are conditionally related to the measurement m, the probability 

that m will occur is simply



Pixel-Based, Stratified And Contextual Analysis of Hyperspectral Imagery – 175

f (m) =   f (m | xi) f (xi)
n

i=1
 (9.26)

Finding a set of parameters that maximize the observations or measurements now yield 

maximization of

 (9.27)max.  f  (xi | m) = ––––––––––––––n

i=1

f (m | xi) f (xi)

  f (m | xi) f (xi)
xi

Note that for the time being we assume one physical measurement by the sensor (e.g., 

radiance or refl ectance). Now let us introduce {y} as the set of parameter vectors associated 

with neighboring pixels. Th is yields the following joint probability to be maximized

 (9.28)max.  f (xi | m, y) = ––––––––––––––––––––––––n

i=1

f (m | xi) f (xi) f (y | (xi | m))

  f (m | xi) f (xi)
xi

It can be shown that this is proportional to

max.  f  (xi | m, y) = f  (m | xi) f  (y | (xi | m)) f  (xi)
xi

 (9.29)

Th us maximization of the conditional probability of the set of variables {xi} given the set 

of measurements {m} within a neighborhood y is equivalent to minimizing the mismatch 

between (geologic-physical) model and observation (allowing some mismatch due to sensor 

noise), f(m|xi), given a prior probability, f(xi), for the variables, xi, and a neighborhood 

distribution, f(y|xi), which is arbitrarily inferred from a kernel of 8 surrounding pixels.

To enable the introduction of hard (outcrop) and soft (geologic interpretation) geologic data 

into the inversion process, a fuzzy approach has been designed to incorporate the geologic 

model. Th e algorithm implemented is based on the fuzzy C-means classifi cation in that 

it employs a membership grade matrix, U, for the N (training) pixels representing the L 

geologic classes as

 (9.30)

 u1l ... u1N

U = 

...   

...

 uL1 ... uLN

Th e fuzzy mean for each of the geologic classes, l
*, calculated from the training data and the 

fuzzy covariance is found as

 (9.31)Cl  = –––––––––––––––––––––––*
 uLN (Rn - l  ) (R - l  )

T

 uLN

* *

N

n=1

N

n=1

where R denotes refl ectance in band n, and l is the cluster or class. Th e most important step is 

the defi nition of the fuzzy membership function on basis of a Gaussian distribution as
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 (9.32)Pl  (R, x, y) = ––––––––––––– e*
1

| Cl  |
0.5 (2 )k/2*

-(R - l )
T Cl    (R - l ) / 2*-1 **

Th is function can be interpreted as a K dimensional histogram, however by introducing 

the factors x and y denoting the spatial domain, the distribution function is transformed 

to 2-K dimensions where the fi rst and second dimension represent the image plane. 

Th e implementation uses a central pixel of known geologic class representing an actual 

outcrop and the Pl
*(R, x, y)  probability density function to describe how the probability of 

encountering a similar class changes in the image plane given the spectral characteristics 

of the classes (since for each class we retain a distribution function). Th e implementation 

of the fuzzy outcrop model into the inversion process is as described above. Th e mean and 

covariance’s for the geologic classes determine the confi dence of the interpreter in the 

geologic model. We will demonstrate in the next section how variations in these parameters 

aff ect the model output.

To demonstrate the approach, here we use ASTER data acquired over a sedimentary terrain 

in a desert environment in Oman. We calculated absorption band parameters for the imaged 

area using the absorption band interpolation method described. Th ese clearly show the 

sedimentary nature of the terrain and allow deducing and subdividing the sequence in four 

basic members namely: limestone, dolomite, sandstone and marl. When we take a transect 

Table 9.3 – Probability matrix for transitions in the selected sedimentary sequence.

To Row totals

Limestone Sandstone Marl Dolomite

From

Limestone 0.69 0.01  0.21  0.09 1.0
Sandstone 0.01 0.64  0.25  0.1 1.0

Marl 0.21 0.13  0.6  0.06 1.0
Dolomite 0.05 0.08  0.1  0.72 1.0

Limestone

Dolomite

Sandstone

Marl

0 150 300 450m

62
30

Figure 9.14 – Cross-section (dotted line on the ASTER band 3 image) through the imaged area and 

interpreted lithologies.
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through the stratigraphic sequence and code the pixels into the classes mentioned (limestone, 

dolomite, sandstone, marl) we can do a Markov analysis on the stratigraphic succession 

(fi gure 9.14).

Assuming this is an infi nite repetitive cycle, we can apply the successions and mutually 

exclusive states and hence calculate an upward/downward transition frequency matrix. 

Dividing the frequencies by the total number of occurrences allows us to derive a 

standardized transition number which we can interpret as a probability. Th is probability tells 

us the chance that another unit follows one unit, for example ‘what is the chance that we 

will go from limestone into dolomite’? Th e various transitions and associated probabilities 

are listed in table 9.3. Obviously, the transitions within one class are greatest, however the 

probability between classes can now be computed. We can also see that the upward and 

downward transitions can be more or less considered similar as the transition from class A to 

B are nearly identical to the probability of going from B to A. Hence we considered a unifi ed 

probability for each of the possible transition states. So now the prior probabilities for the 

variables, f(xi), are simply the number of occurrences of the state in the type section studied. 

Th e joint probability in a certain neighbourhood that we wish to maximize given by:

max.  f  (xi | m, y) = f  (m | xi) f  (y | xi) f  (xi)
xi

 (9.33)

is now determined by the probability of the individual states and the probability of transitions 

within one neighbourhood given by the probabilities of the transitions and the length of the 

neighbourhood.
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Figure 9.15 – Geoinversion of the ASTER data using 10 iterations and a rigid geologic model 

(results are overlain on ASTER band 3 subset). Please consult the enclosed CDROM for a full 

colour version.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
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Figure 9.16 – Associated RMS images for the model run of fi gure 9.15.
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Figure 9.17 – Geoinversion of the ASTER data using 10 iterations and a linear directional Markov 

model. Please consult the enclosed CDROM for a full colour version.
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Th e model inversion was run over 10 iterations using the rigid implementation of the 

geologic model and the fuzzy implementation (fi gure 9.15 and 9.17). Th e results are poor 

and the associated rms/noise images of the sequence of iterations clearly show strong 

spatial patterns that have been omitted in the analysis. Secondly we ran the model using the 

fuzzy memberships and the associated probability transitions. Th is resulted in a signifi cant 

improvement as can be seen from the noise/rms calculated for each iteration (fi gure 9.16 

and 9.18). A complicating factor that we are presently working on is that the sedimentary 

sequence is folded. Th us the transition matrix is dependent on the orientation. In our case we 

are working in a 9 by 9 square kernel along the diagonal directions. Th is implies that some 

correction on the probability included needs to be done relative to the orientation of the 

bedding.

9.5 Conclusions

Refl ectance spectroscopy has been used to derive estimates of soil/rock geochemistry and 

foliar biochemistry using, to date, mostly fi eld and laboratory spectroscopic techniques. Th ese 

techniques most often make use of absorption feature characteristics (e.g., absorption band 

wavelength position, depth and asymmetry), which are combined with geochemical analysis 

in a multi-linear regression to fi nd empirical relationships with chemistry of a sample. 

Absorption features have also been used as input to spectral feature fi tting techniques that 

allow mapping surface composition (mainly mineralogy) from hyperspectral image data. 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
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Figure 9.18 – Associated RMS images for the model run of fi gure 9.17.
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However, by this process, the absorption feature analysis is confi ned to input data in a feature 

fi tting. A simple linear interpolation method is introduced to estimate absorption-band 

parameters from hyperspectral image data. By applying this hyperspectral data it has been 

demonstrated that absorption feature maps correspond favourably with the main alteration 

phases characterizing the systems studied. Th us the derived feature maps allow enhancing 

the analysis of airborne hyperspectral image data for surface compositional mapping. Th e 

next step is to expand in the direction of stratifi ed analysis of hyperspectral data. Th is allows 

incorporating prior information into the analysis of hyperspectral data sets. Th e last example 

we present is using spatial information in full contextual analysis of hyperspectral data sets. 

In this case study we deploy Markov chain analysis to include the repetitive patterns in 

a sedimentary sequence for the study of hyperspectral data sets. Overall, with this paper 

we wish to advocate that including both prior-knowledge as well as spatial contextual 

information is an essential step forward in the science of hyperspectral remote sensing.



Chapter 10

Variable Multiple Endmember Spectral Mixture 

Analysis for Geology Applications

Klaas Scholte, Javier García-Haro & Th omas Kemper

10.1 Introduction

Variations in the earth surface composition in terms of mineralogy, vegetation, and soil 

patterns represent one of the main sources of systematic change on local, regional and 

global scale. Th e ability to detect these variations using multitemporal, multispectral 

and hyperspectral remotely sensed data is of utmost importance for both environmental 

research projects and management activities (Maselli, 1998). Th e analysis of compositional 

measurements on a large number of materials has to consider individual samples as 

mixtures of a relatively small number of  endmembers (EMs), which represent the spectral 

characteristics of the scene cover types.  Spectral Mixture Analysis (SMA) was developed in 

recent years to determine the sub-pixel abundance of vegetation, soils, and other spectrally 

distinct materials that fundamentally contribute to the spectral signal of mixed pixels (e.g. 

Smith et al., 1985; Adams et al., 1989). SMA aims at fi nding the fractions of a number of EMs 

that best explain the observed mixed pixel refl ectance spectrum. Th is technique decomposes 

the scene in linear combinations of spectral endmembers to recover the fractional 

contributions of the fundamental components as abundance images (Settle & Drake, 1993). 

Figure 10.1 illustrates the SMA basic principal in terms of the spectral characteristics of 

water (endmember 1), soil (endmember 2), and vegetation (endmember 3). A scatterplot of 

the two bands shows the spectral variation for these three endmembers. Hence the black 

crosses, which can be identifi ed as image pixels, can be considered as a mixture of these three 

components.

Th e technique, therefore, provides a means to detect and represent components that occur 

entirely at a subpixel level, such as soil contamination after a mining accident or minerals in 

mud volcano fl ows. When applied to multispectral satellite data or hyperspectral airborne 

data, the result is a series of images each depicting the proportion or abundance of a surface 

cover type.

Diff erent SMA approaches have been developed in the literature. Th e most widely used 

method consists in employing the same EMs (typically between 2 and 5) on the whole image, 

and using all available EMs at the same time. In our case however, many contaminated soils 

and various mud volcano clay minerals are present in the scene, in such a way that 2-5 EMs 

are often insuffi  cient to describe the scene fully, and lead to unclear results. For example, 
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fractions of the unmodelled EMs will be partitioned or allocated to incorrect EMs. Fractional 

errors result also in physically unrealistic negative or overpositive fractions. Simple unmixing 

is also unable to address correctly the natural variation of components in the scene. Smith et 

al. (1994) found that the dominant eff ect of EM spectral variability is expressed in changes in 

fractions rather than an increase of the modelling error.

In recent years, many authors have proposed a more complex model where both the number 

and the set of EMs vary on a per-pixel basis. Th e idea consists in restricting the large set of 

possible endmembers to a small set of appropriate endmembers, which can be diff erent for 

each pixel, thereby allowing an accurate decomposition using a virtually unlimited number 

of endmembers. Th is strategy dynamically identifi es the optimal EM subset for each pixel 

image. Several authors (García-Haro et al., 1995; Maselli, 1998; Painter et al., 1998; Roberts et 

al., 1998; Okin et al., 1999) have adopted this criterion and this improved SMA is known as 

 Multiple Endmember SMA (MESMA) (e.g. Roberts et al., 1991; Lacaze et al., 1996).

However, MESMA still have problems to identify EMs that may not refl ect the diff erent 

surface conditions in the scene. Deviations of the linear relation as well as the limited 

amount of available endmembers will often produce unrealistic outcomes in terms of 

physically unrealistic, negative or overpositive endmember abundances. Th is is caused by an 

inappropriate set of endmembers to describe the spectral variability of the full image on a per-

pixel basis. VMESMA ( Variable Multiple Endmember SMA) is an extension of MESMA 

that attempts to overcome these problems. It relies on the use of a priori knowledge, which 

is especially necessary when diff erent submodels tend to model the same areas equally well. 

An optimum strategy seems to be identifying diff erent sub-areas and decomposing them in 

a separate stage. For example, for agricultural studies one possible procedure would consist of 

fi rst classifying the pure pixels and then unmixing the mixed pixels (Klein-Gebbinck, 1998). 

VMESMA is an integrated image analysis package that incorporates appropriate tools to 

dynamically identify various distinct image sub-areas and uses in each specifi c sub-area the 
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Figure 10.1 – Two dimensional spectral data, refl ectance spectra of the individual endmembers (left) 

and the endmembers in a two-band plot (right) in which the crosses indicate the refl ectance of the 

pixels in the image (After Adams et al., 1993).
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most convenient set of candidate EM submodels and the most optimal criteria for submodel 

selection on a per-pixel basis.

10.2 Theory and methods

.. Endmember selection

Th e unmixing process relies on EMs that closely represent pure surface cover types that show 

signifi cant spectral contrast. Th erefore, the strategy to select these endmembers is one of the 

key issues in the successful application of SMA. Several authors have extracted the EMs from 

a fi eld or laboratory spectral library (e.g. Kemper, 2003; Van der Meer, 1996). Th is method is 

somewhat limited to take into account all processes and factors infl uencing the data, such as 

instrumental drift, atmospheric eff ects, and illumination intensity. However this method is 

recommended when the object of interest is occurring only at image subpixel level and hence 

no pure pixel EM can be extracted. Many authors (Smith et al., 1985; Settle & Drake, 1993; 

Maselli, 1998; García-Haro et al., 1999; Van Der Meer & De Jong, 2000) extract EMs from 

the image itself subject to a set of user-defi ned constraints. For example, EMs are usually 

selected by using statistical methods, such as principal component analysis (PCA) (Richards, 

1994), convex hull geometry (Boardman, 1992), or a pixel purity index (PPI) (Boardman et 

al., 1995). Th e categorisation of the scene is especially helpful to identify and estimate image 

EMs in user-defi ned areas, typically unmodelled areas or presenting unrealistic proportions. 

Th e VMESMA tools combine spatial attributes like user-selected regions of interest or 

segmented units, with spectral attributes (e.g. scattergram-based zonifi cation) in order to 

highlight the desired features in the image. Image EMs are then extracted from these areas 

using diff erent tools such as non-supervised clustering or PCA-based algorithms. Th ese EMs 

are better adapted to the local variations in ground slope, elevation, soil type, etc. and reduce 

unmixing errors due to the uncertainty related to apparent surface refl ectance retrievals.

However, image EMs may be limited to address materials not fully occupying a pixel. Th is 

weakness may be alleviated by spectrally matching the image EMs with a spectral library, 

which moreover provides them with a physical interpretation. With this aim, it is convenient 

to dispose of a comprehensive spectral library that contains spectra of plausible ground 

components. Th e library used in VMESMA is associated with a spectral attribute database, 

namely MedSpec, Mediterranean Spectral database (Preissler et al., 1998).

Th e spectral library matching tool combines the following methods: (i) spectral angle 

between fi eld (f ) and library (l) spectra by applying equation

 (10.1) = cos-1  –––––––––
f · l

|| f || || l ||

(ii) the euclidean distance between f and l, and (iii) the euclidean distance after applying a 

standardisation procedure, i.e. transforming the data to a set of percentage variations about 

the mean value. Th e fi nal decision relies on the combined scores of the considered methods 

along with the visual examination of the matching.
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In the case studies below, we have used library spectra since (1) the data are calibrated to 

refl ectance and (2), for contamination mapping, an advanced spectral library for natural 

surface materials of Mediterranean ecosystem is available (Preissler et al., 1998).

.. Standardised unmixing

Shade conveys useful information regarding vegetation structure, a key to vegetation types 

identifi cation and classifi cation (Adams et al., 1995; Shimabukuro et al., 1998; Roberts et al., 

1998; Peddle et al., 1999). For example, shadow patterns caused by canopy architecture may 

be used to infer community physiognomy (e.g. grasses, shrubs, and trees) and surface texture 

(Smith et al., 1990, Ustin et al., 1993). However, the utilisation of the shade EM introduces 

important drawbacks:

1   Th e diffi  culty to unambiguously defi ne an average pixel signature for the shade 

component, since the ‘obscurity’ or tonality of shadow cast by vegetation varies depending 

on the canopy structure and the leaf transmittance.

2  Th e shade abundance is less directly interpretable in ecological terms than soil and 

vegetation maps. Moreover, shade is dependent on sun/view angles and topography, and 

varies with time.

3   Using a shade EM results in a more unstable solution of the SMA due to the lowering of 

spectral complexity between EMs since the shade EM, by defi nition a very dark spectrum, 

makes the mixing library more ill-conditioned (Boardman & Goetz, 1991; García-Haro, 

1997).

4  Retrieving the absolute abundances of the EMs requires partitioning of the shade 

abundance between the rest components. However, renormalising the shade introduces 

systematic errors, since at the subpixel scale, where shadows cannot be spatially resolved, 

it is not possible to tell whether shade is due to shading, shadows, or to a combination of 

both (Smith et al., 1990).

In order to overcome many of the limitations of the shade EM, an alternative approach 

consists of performing a standardisation on both the EMs and the image spectra as a 

preleminary step before applying the SMA. Th is standardisation transforms the data to a set 

of variations about the mean value with a mean value of zero and a standard deviation of one. 

Th is allows matching of the data in a manner independent of the refl ectance scale (Mackin et 

al., 1991):

 (10.2)r = –––––
r - r

r

ˆ

where r̂ is the standardised vector associated to the pixel vector r, with mean r and standard 

deviation r. Th is procedure bypasses problems related to shadowing and brightness variations 

due to grain size etc., retaining and enhancing the information due to the spectral shape, such 

as gradient (i.e. derivative features) and absorption bands. Th is approach is based on the same 

principles and equations of the conventional SMA.

García-Haro et al. (2003) expressed the standardised SMA as follows
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r =  Eifi + 
c

i=1
ˆ ˆˆˆ  (10.3)

where r̂ is the standardised pixel vector, Êi represents the standardised i-th endmember 

spectrum of a population of c spectra, fi is the proportion of such endmember in the 

standardised co-ordinates, and ˆ is the residual vector (expressed in standardised units).

Using the defi nition of standardised variables, we can rewrite equation 10.3

 (10.4)––––– =  ––––––– fi + 
r - r

r

c

i=1

Ei - Ei

Ei

ˆ ˆ

If we compare it with the standard SMA we fi nd the following relationship

 (10.5)fi =  –––– fi
r

Ei

c

i=1

ˆ

Th is transformation ensures the ‘sum-to-one’ condition of the endmembers and preserves the 

positive fraction constraint. Th e standardised SMA applies the SMA using the standardised 

pixel vector r̂ and the standardised endmembers Êi (i=1,... c). Th e solution is identical to the 

solution for the standard constrained SMA. Th e SMA solution provides estimates of the 

unknowns fi, and the model errors are quantifi ed by means of a residual model ˆ. Finally, the 

proportions fi  constrained to sum-to-one are estimated making use of equation (10.5).

VMESMA allows applying conventional unmixing to estimate the EM proportions, based 

on refl ectance, but it also provides an alternative solution, namely standardised unmixing, 

which off ers new more appropriate solutions to specifi c problems. One advantage of applying 

a standardised SMA is that it is possible to use a spectral signature of a new diff erent 

material, or to apply SMA with a smaller number of endmembers increasing the reliability 

of estimated abundances. Another practical reason for a standardised unmixing is that 

VMESMA does not need a fi xed amount of endmember spectra such as the conventional 

SMA, where only a maximum of N-1 EMs can be used.

.. VMESMA features

VMESMA is conceived as an iterative feedback process, in which unmixing performance 

may be potentially improved in each stage until an optimum level is reached. Th is permits 

the defi nition of standard and repeatable pathways to incorporate information dynamically 

derived from the most recent unmixing outcomes with other sources of data in order to 

optimise the algorithms and increase the fl exibility of the modelling approach. Th e structure 

of the VMESMA is summarised in fi gure 10.2.

After each unmixing run, the user is provided with a suite of outputs readily available to 

conduct the error assessment. In addition, abundances of similar EMs are usually merged to 

group together thematically EMs into general categories, as it provides the physical context 

necessary to interpret the results. As a by-product, obscuring materials – such as green/dry 

vegetation in geological applications or shade – may be removed from the refl ectance image. 

One direct application would be scaling up mineral proportions in each pixel producing de-

vegetated geological refl ectance images for identifi cation of rock-types (Bierwirth, 1990).
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Figure 10.2 – Flow-chart of the VMESMA working scheme.
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Th e analysis requires scientist guidance and oversight, mainly to evaluate the model 

performance and fractional errors. With this aim, VMESMA provides overlay capabilities 

that show all the specifi ed spectral information of the chosen pixel, and real-time pan and 

zoom and link spectral profi ling from large multiband data. Th us the analyst can seek for 

pixels with high root mean squared error (RMSE) or fractional errors, relating such results 

with the simultaneous analysis of their refl ectance spectra, their best-fi t modelled spectra, the 

residual spectra, the model chosen, the unit number and the set of abundances obtained. Th is 

information can be used to incorporate new areas to the image segmentation and modify the 

model lists for subsequent unmixing runs in order to improve the results.

Stratifying the images before applying more specifi c interpretative procedures may improve 

identifi cations of specifi c compounds and is the basis of the variable unmixing strategy. 

Multispectral information, unmixing results and any other diff erent source of data may 

assist in revealing the structure of the area and allow its partition into characteristic zones 

with user-specifi ed attributes. VMESMA provides tools to incorporate information from 

many diff erent data sources including ancillary data (e.g. land cover, land use, soil type) and 

multispectral data (e.g. refl ectance, modelling errors, abundances). Generally, fi ne-grained 

studies for small regions will defi ne more EMs than coarse-grained studies of larger regions 

(Ustin et al., 1993). Th us, repeated analyses on spatial or spectral subunits of the image may 

increase the number of identifi ed components since additional components may be identifi ed 

from the residual or unmodelled spectral variance. After each unmixing run, new image 

subunits may be thus identifi ed from spectral and spatial features of interest. Problematic 

areas are usually found from high modelling and abundances errors, i.e. typically identifi ed 

from negative values or not matching the proportions derived from the fi eld observations or 

other sources. Next, the analyst can extract EMs from these areas, which will be incorporated 

in the EMs library. Th e subsequent iteration will be performed on the basis of the updated 

image segmentation and using a modifi ed models list extracted from the updated library. 

VMESMA also enables selective unmixing in which only a few image subunits are processed 

while leaving unaltered the abundances of the rest, as obtained in a previous iteration. Th is 

strategy may speed up considerably the computations.

One of the critical constraints of the unmixing analysis is the requirement for human 

intensive involvement and computational cost. VMESMA integrates speed optimisation 

capabilities such as an effi  cient expert system to select the best EM submodel, selective 

analysis focused on problematic areas and a compression scheme for a fast, interactive 

unmixing in the fi rst stages of the iterative process. Th e model performance is usually assessed 

in the literature from the residual spectrum (e.g. RMSE, maximum residual or the quadratic 

chi-square of the fi t. In addition, VMESMA uses a new and alternative criterion, namely 

colinearity factor, that has demonstrated to be very robust and faster than the residual one, 

since it reduces the dimensionality of the problem. Taking decisions about model creation 

may be useful to reduce the model set to a smaller, more appropriate one, thereby saving 

time of computations and improving the fi nal results. Model subselection includes, among 

other methods, removal of models that account for less than a percentage of the image and/

or are spatially fragmented (Roberts et al., 1998). Th e fi rst steps of the process, i.e. the EM 

submodels creation, hence segmentation of the area, and identifi cation of unmodelled EMs, 

is usually performed using smaller images thanks to a compression scheme. Th en the analyst 
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progressively increases the level of data quality in the successive unmixing runs with the aid 

of an upscaling utility that expands the segmentation image to the specifi ed level of detail.

Th e Unmixing frame is an easy-to-use interface for specifying the EM submodels and the 

strategy to unmix each individual unit. Th e spatial/spectral compression scheme can be 

specifi ed at each unmixing iteration. Each unmixing is executed in a sequence unit by unit, 

starting from the fi rst unit. For each individual unit the scientist can specify the following 

parameters:

1   Th e expert system used to select the best EM subset. Although VMESMA is based on 

an adaptable selection of the number of EMs (2, 3 or 4), a ‘hard’ criterion (e.g. selecting 

always a 3-EM model) or, alternatively, a simpler mixed criterion (e.g. enabling only 2 

or 3 EM solutions) are also possible. VMESMA uses an effi  cient expert system, which 

basically ties together modelling errors and fractional errors, and makes an automated 

decision to assign each composing material to its optimum EMs subset. Th e procedure is 

composed of three steps: (1) Th e colinearity factor criterion is applied to all submodels in 

order to preselect the most probable candidates; (2) fractional errors ( neg) and modelling 

errors ( r) are used to identify the most likely 2-, 3- and 4-EM subsets, and (3) the three 

best subsets are compared using an expert system in order to select a single subset.

2  Th e lists of candidate EM subsets. A function enables the user to create and edit the 

candidate EM subsets selecting them from the current library.

3   Th e type of unmixing algorithm, i.e. conventional or standardised unmixing.

4  Th e fi nal criterion used to evaluate the modelling errors, i.e. RMSE residual, maximum 

residual or a new concept, namely colinearity factor (García-Haro et al., 2003).

5   Which of the following operations is performed on each individual unit: (i) mask, (ii) 

unmix using the updated submodels list, or (iii) keep the abundances of the last unmixing 

(i.e. selective unmixing).

6  Th e covariance matrix of the observations, e.g. to modify the relative contribution of 

each specifi c spectral band in the unmixing analysis. In general, channels that are more 

uncorrelated, present higher radiometric accuracy and enhance the contrast between 

EMs should be prevalent. A preliminary study (Brink et al., 2003) has shown that the 

Table 10.1 – Summary of some relevant VMESMA features.

VMESMA Application Relevant VMESMA feature

Use of Spatial information Stratifi cation driven by the targeted application
EM submodel adapted to physiographic conditions
Reduced EM misidentifi cation
Reduced computation time

Problem diagnosis 
and solution

Addressing unmodelled EMs
Link with a thematic spectral library
More reliable modelling of scene characteristics

Hierarchical assessment Incorporation of prior knowledge and previous unmixing results
Focused analysis of specifi c sub areas

Advanced unmixing 
methodology

Standardised unmixing
Use of contextual information 
Speed optimisation capabilities
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assessment of the carbonates and clay is increased using higher weights for channels 

corresponding to its absorption bands in the SWIR (e.g. the spectral interval [2200, 

2450] nm), which enhanced the identifi cation and mapping of the main soil spectral 

components.

In summary, the segmentation of the scene in combination with a knowledge-based expert 

system adds fl exibility to the solution. Hence the determination of the optimum pixel 

submodel is not a ‘black-box’ but it may be eff ectively assisted by the unmixing outputs, 

the fi eld information, the image characteristics and the targeted application (see main 

VMESMA features in table 10.1).

10.3 A case study from the Aznalcóllar Mine, southern Spain

.. Introduction

Th e  Iberian Pyrite Belt (IPB) is considered one of the most important reserves of non-

ferrous metals in Europe, that include the massive sulphide deposits of Rio Tinto, Aljustrel, 

Neves Corvo, Th arsis, Sotiel and Aznalcóllar (Almodóvar et al., 1998). Many areas in the IPB 

were mined since roman times. In April 1998 the dam of the tailings pond of the Aznalcóllar 

mine, approx. 30 km West of Seville (Spain), broke and contaminated more than four 

thousand hectares of fl ood plain and agricultural land with fi ne-grained pyritic sludge with 

high concentrations of heavy metals (fi gure 10.3).

Th e tailings were stored in the pond to prevent the pyrites from oxidation. Pyrite oxidation 

is a complex process that proceeds rapidly, when pyrite is exposed to air. It produces in a fi rst 

step a solution of ferrous sulphate and sulphuric acid. Th e dissolved ferrous iron continues 

to oxidize and hydrolyze producing additional acidity. During the oxidation process the 

pyrite transforms fi rst to copiapite, then to jarosite, schwertmannite, ferryhydrite and 

eventually to hematite or goethite (Nordstrom, 1982). Th ese secondary minerals are iron-rich, 

hydroxyl- and/or water bearing, which makes it possible to identify them on the basis of their 

diagnostic spectral refl ectance features (Swayze, 2000). Th us airborne hyperspectral images 

were acquired for mapping of the residual contamination after the fi rst remediation campaign 

62
30

Figure 10.3 – Aerial photograph of the Aznalcóllar area showing fl oodings right after the accident. 

Please consult the enclosed CDROM for a full colour version.
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and for monitoring the development of the oxidation process. Th e airborne campaigns were 

accompanied by a dedicated soil sampling and spectral measurements.

.. Data set

Th e imaging spectrometry data were acquired with the HyMap sensor in June 1999 and 

July 2000. Th e data takes covered the entire contaminated area and were accompanied 

by a radiometric calibration fi eld campaign. Th e HyMap system provides 128 wavebands 

over the range 403-2480 nm with a spectral resolution of 13-17 nm. Th e data were delivered 

atmospherically and geometrically corrected by DLR according to the methods described by 

Richter (1997) and Schlaepfer et al. (2001). During two extensive fi eld campaigns in parallel 

to the fl ight campaigns seven representative sites along the aff ected river catchments were 

selected. Spectral measurements using GER S-IRIS and ASD Fieldspec II resulted in a 

VIS to SWIR high-resolution library hierarchically organised of rocks, soils and vegetation. 

Furthermore, in both years a detailed soil sampling was carried out, collecting more than 

300 samples from diff erent depths. Th e soil samples were geochemically analysed in the 

laboratory for their element composition using standard methods (XRF, AAS) and spectrally 

measured.

.. Detection of residual contamination and oxidation products

Th e selection of appropriate EM is crucial for a successful application of SMA. It has to 

consider the changing spectral signifi cance of EM as a function of the variability of the 

present surface materials, the spatial and spectral resolution of data and the thematic purpose 

of the study.

For the detection of residual sludge and oxidation products, diff erent EM had to be taken 

into consideration, which refl ect the sludge EM and potential secondary minerals like jarosite, 

copiapite, ferrihydrite and goethite. However, for the images of 1999, the oxidation was 

limited to areas with a constant water supply and for the major part of the contaminated area 

no considerable oxidation took place. Th us, a single spectrum of pure sludge was suffi  cient 
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Figure 10.4 – Sludge and secondary mineral end members.
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to represent the sludge fraction. In the year 2000, other sludge related spectra had to be 

taken into consideration, because fi eld and image assessment confi rmed that the oxidation 

processes had produced various crusts on the soil surface. During the second fi eld campaign, 

spectral measurements of the most abundant crusts were recorded from which the EM were 

selected (fi gure 10.4). In this case study, the use of image EM derived with VMESMA from 

the image was not suitable due to the fact that after the clean up the sludge was worked into 

the soil and it was impossible to obtain a pure sludge EM from the image.

Th e pyritic sludge is spectrally very dark and almost featureless as shown in fi gure 10.4. 

Th is causes problems in conventional SMA, because the spectral contrast between sludge 

and other dark and spectrally fl at components, like water or shade, is very small causing 

misidentifi cations. Using the standardization prior to the unmixing, which enhances strongly 

the weak absorption features of the sludge, solves this problem, because the shade EM can be 

neglected as described earlier. Moreover, also the green vegetation can be represented using as 

few as a single EM.

For the extraction of the residual sludge the signal had to be separated from other 

‘background’ information. Th us, typical spectra of green and dry vegetation and two diff erent 

soils were selected from the spectral database as background information (fi gure 10.5).

In the fi rst unmixing step, the four background spectra were used to unmix the entire scene. 

Th e RMSE after the fi rst unmixing clearly separated the sludge-aff ected areas with a high 

RMSE from the non-contaminated areas (fi gure 10.6).

Th e next unmixing step was performed on the segmented image. Areas outside the 

contaminated area were neglected, and in the aff ected area, a RMSE threshold was used to 

separate areas that were already suffi  ciently modelled from areas which were sludge aff ected. 

Th e sludge abundance map for June 1999 (fi gure 10.7) shows that the sludge abundances were 

still very high with an average abundance of 0.51 (calculated for areas with sludge abundances 
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Figure 10.5 – Background end members.
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>0). Th e results were obtained with only one sludge EM. In fact, tests with additional sludge 

EMs were not successful. Th is is a clear indicator that at this point in time, 13 months after 

the accident, oxidation of pyrite did not yet reach a high intensity and consequently it was 

possible to map the sludge using only the pyrite sludge EM. Th e retrieved sludge distribution 

corresponds well with the fi eld observations and the geochemical analysis and refl ects the 

discontinuous distribution pattern caused by the mechanical clean up.

Th e same unmixing strategy was applied for the data collected in 2000. However, the 

situation had changed signifi cantly. Th e remediation activities proceeded with a second 

cleaning phase in combination with fi xation of the trace metals. Th is was achieved by 

augmentation of the pH-level of the soil through addition of lime-rich material. At the time 

of the second fi eld and fl ight campaign the work was still ongoing. In many areas, particularly 

in the northern part, effl  orescent crusting could be observed. According to Nordstrom (1982), 

these crusts are most commonly formed during dry periods when evaporation promotes 

the rise of subsurface water to the uppermost soil surfaces by capillary action. As the water 

reaches the surface it becomes progressively more concentrated and fi nally precipitates 

various salts in effl  orescence. Th e formation of these iron sulphate salts is an intermediate 

step, which precedes the precipitation of more common insoluble iron minerals such as 

goethite and jarosite. In order to account for this change in surface composition two new 
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Figure 10.6 – RMSE after the fi rst unmixing step. Most of the pixels with a high RMSE lie within 

the aff ected area indicated by the white line. Please consult the enclosed CDROM for a full colour 

version.
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Figure 10.7 – Sludge abundance map 1999. Th e aff ected area (black) superimposed on the HyMap 

false colour image for better orientation. Sludge abundance within the aff ected area is scaled from 

zero (black) to one hundred percent (white). Please consult the enclosed CDROM for a full colour 

version.



194 – K. Scholte, J. García-Haro & T. Kemper

Jarosite

Pyrite Gypsum
0 25 50 75 100

0

25

50

75

10
0 0

25

50

75

100

4148000

746000 7470006o13’W

37o27’N

4149000

4150000

4151000

37o28’N

6o12’W

62
30

Figure 10.8 – Mineral abundance map 2000. Th e mixtures of the diff erent EMs can be derived 

from the colour coded ternary diagram. Please consult the enclosed CDROM for a full colour version.
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EMs representing these effl  orescent crusts were included in the SMA modelling. Th e 

abundance map for July 2000 shows a considerable reduction of areas with sludge EM 

abundances compared to the abundances obtained for June 1999 (fi gure 10.8). Th is reduction 

was achieved by the second remediation campaign. However, in areas where the remediation 

was not fi nished, higher abundances of secondary minerals were found. In these areas, jarosite 

was found to be abundant. Th e presence of gypsum is restricted to shallow depressions, in 

which more water gathered after rainfalls and the humidity was suffi  cient for the formation 

of gypsum when the water evaporates. However, these few millimetres thin gypsum crusts 

are only on the surface, below them secondary minerals are found. Th us, the presence of 

gypsum is on the one hand an indicator for buff ering of acidity by the distributed material 

Ca-rich material; on the other hand it shows that there is still residual sludge in the soil, 

which produces acidity.

10.4 A case study from Aktharma-Pashaly mud volcano, Azerbaijan

.. Introduction

Azerbaijan, South Caspian Basin, is one of the oldest oil producing countries in the world. 

Large oil and gas reserves have been proven for the country, most of which are at great 

depths in between 6 and 13 km, and confi ned to Miocene and Pliocene paleo Kura and paleo 

Volga deltaic sediments in the onshore part (Abrams & Narimanov, 2000; Katz et al., 2000). 

Th e Azerbaijan oil fi elds seem to have originated from common clastic, dark shale Source 

Rock (SR) with a restricted stratigraphic distribution, deposited in a transitional marine 

environment, referred to as the Maykop Suite (Katz et al., 2000; Inan et al., 1997). Productive 

Series (PS), sedimentary sequences from which the hydrocarbons can be produced, have 

signifi cant mineral rock fragments (Abrams & Narimanov, 2000; Buryakovsky et al., 1995). 

Th e Great and Lesser Caucasus contain substantial Mesozoic and Cenozoic volcanogenic 

rocks that act as sources of montmorillonite-rich sediments. Late Pliocene PS contain less 

quartz, more feldspar and fragments of both sedimentary and volcanic rock fragments, 

refl ecting a more typical paleo-Kura provenance. In general ‘harder’ minerals such as chlorite, 

illite, and kaolinite characterize Azerbaijan hydrocarbon reservoirs of argillaceous material. 

Beside its oils, Azerbaijan is also famous for its number of mud volcanoes. According 

to Abrams & Narimanov (2000), Katz et al. (2000) and Lerche & Bagirov (1998), the 

South Caspian Basin is characterized by very high basin sedimentation rates leading to 

large volumes of largely unconsolidated sediments of more than 20km. Th is favours the 

development of mud volcanism, because abnormally high pore pressures may lead to lateral 

rock density variations, which in turn develop mud volcanism and earthquakes (Buryakovsky 

et al., 1995; Kopf, 2002). Obviously in Azerbaijan, mud volcanism is intimately associated 

with hydrocarbon (oil and gas) seepage, which can be illustrated by a massive oil  mud volcano 

eruption of Lokbatan mud volcano in 2001 (fi gure 10.9).

Mud volcanoes form on the surface as expressions of the vertical migration of oil, gas, water, 

clays, and bedrock, and thus refl ect the geological history at a particular location. Th rough 

typical geomorphologic mud volcano vents called gryphons and salses, mud volcanoes 

eject argillaceous material (breccia) and build up their topography. Optical satellite images 

(Advanced Spaceborne Th ermal Emission and Refl ection –  ASTER) and ASD ground 
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Figure 10.10 – USGS mineral spectra resampled to ASTER bandpasses in order to show the gross 

shape curves of typical minerals that can be identifi ed as a group.
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Figure 10.9 – Lokbatan oil mud volcano eruption, October 25, 2001. During this eruption 

hydrocarbons from the earth’s interior were set on fi re resulting in a fl ame of about 60m high; about 

192,200m3 mud was expelled covering an area of about 9.61 ha. (image courtesy Neil Piggot, BP/

Statoil). Please consult the enclosed CDROM for a full colour version.
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spectral measurements of 2001 and 2002, centred on onshore Azerbaijan, are analysed 

using the VMESMA tool. Basically we are interested in the surfi cial mineral content of the 

mud volcano surface since it refl ects the initial products, the deep burial of rocks, and the 

particular assemblage of primary or secondary minerals of the subsurface. Hence we look for 

evidence of mineral alterations in relation to mud volcanism in terms of mineral provenance 

information from mud volcano fl ow mixtures through imaging spectroscopy in the 0.5-2.5 

m part of the electromagnetic spectrum.

.. ASTER data pre-processing

Empirical line correction for ASTER band  and band  inaccuracies

Th e ASTER scenes selected are of the L2 type and were obtained from the EROS Data 

Centre (EDC). Prior to the image analysis an empirical line correction was carried out to 

correct for the ‘crosstalk’ instrument problem. Th is problem is caused by the refl ectance of 

light from ASTER band 4 (centred at 1.65 m) optical components into ASTER band 5 

(centred at 2.165 m) and ASTER band 9 (centred at 2.39 m) (Abrams, 2003, personal 

communication). Hence the sensor acquires inaccurate refl ections and interpretation in terms 

of band absorption features is not feasible, and ASTER images from Aktharma-Pashaly 

mud volcano were empirical line corrected using ground truth fi eld spectral refl ectance 

measurements.

Time series registration

Th e usage of VMESMA in multi temporal ASTER imagery requires accurate co-registration 

of the ASTER time series. We use a statistical approach in which ground control points 

(GCPs) were matched and refi ned through cross correlation in a window of size 50 by 50, 

i.e. 50 points extension from the centre point, for a 12 by 12 window position (Hill & Mehl, 

2003). In general the VNIR band is used for this analysis due to the high contrast between 

vegetation brightness response and nonvegetated surfaces, including open water, man-made 

features, bare soil, and dead vegetation. Th e advantage of this method is that it can also select 

GCPs in areas that do not show clearly distinguishable features such as cross-roads or other 

commonly used features in the manual GCP selection procedure.

.. ASTER mineral mapping

Th e ASTER SWIR refl ective bands promise enhanced discrimination of mineral assemblages 

relative to Landsat TM and SPOT satellite data (table 10.2). Amongst others, Hornibrook 

(2002) shows that USGS spectral library measurements of muscovite with its typical 2.20 

m absorption is preserved in the ASTER gross shape curve, showing a signifi cant spectral 

absorption in ASTER band 6, centred at 2.205 m. However ASTER probably can not 

identify this mineral directly, but Al-OH bearing minerals (muscovite-montmorillonite-

illite-Al smectite) could be identifi ed as a group (fi gure 10.10). For the mapping of kaolinite 

using ASTER, the diagnostic doublet absorption feature near 2.175/2.210 m shall disappear 

in the ASTER spectral curve, but the gross shape of the doublet will be preserved in terms of 

asymmetric absorption in band 6 (fi gure 10.10). Calcite and chlorite exhibit major absorption 

near ASTER band 8, centred at 2.32 m and hence ASTER bandpasses will show this feature 

in terms of symmetric absorption in band 8. Other common Mg-OH bearing minerals, 

which are characterised by absorption features ranging from 2.32 to 2.39 m have similar 
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ASTER band 8 responses. ASTER will probably have troubles in separating carbonates from 

Mg-OH bearing minerals, however ASTER should be able to map these as a group (fi gure 

10.10).

.. Identifi cation of key endmembers

As previously mentioned the EM selection procedure is a critical part of the unmixing 

assessment. Th e VMESMA tool off ers  Principal Component Analysis (PCA) and  Cluster 

Analysis (CA) to evaluate the spectral variability in the image. A PCA consists in rotating 

the coordinate system such that most of the variation in the data is found along a limited 

Table 10.2 – Possible mineral assemblages that can be detected by ASTER SWIR bandpasses.

Absorption
wavelength ( m)

Mineral Group

2.165 Low pH/acid environments
2.205 Al-OH bearing minerals
2.260 Jarosite
2.327 Carbonates and Mg-OH bearing minerals
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Figure 10.11 – VMESMA Endmember Scattergram tool to extract spectrally diff erent zonations 

in the image. Four regions are defi ned based on a scattergram of ASTER 2 (X-axis) and ASTER 

3 (Y-axis) that matches the scattergram properties as explained by fi gure 10.1. Please consult the 

enclosed CDROM for a full colour version.
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number of axis, the so-called principal components (PCs). Basically pure image endmembers 

are found at the extremes of each PC. However, to fi lter the presence of isolated points in 

the dataset, we take a proximity of 0.2 of the extremes of the cloud into account. In this way, 

the endmembers are somehow deduced form the entire data structure rather than from a few 

outlying pixels. Figure 10.11 plots the VMESMA Endmember scattergram tool of ASTER 

band 2 and ASTER band 3 in which we extract image spectral characteristics for vegetation, 

bare soil, and mixtures (based on fi gure 10.1).

.. Results

Based on fi gure 10.11 ASTER four image segmentations were created, each depicting typical 

refl ectance information. Segmentation 1 (red) shows pixels which are infl uenced by vegetation 

and segmentation 2 to 4 were mainly separated in terms of refl ectance intensity. Unmixing of 

AI-OH probably Kaolinite

AI-OH probably Montmorillonite

AI-OH probably Illite

Fault

(a) (b)ASO10507 ASO20729

0 1km
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Figure 10.12 – ASTER colour composites of (a) May-7-2001 and (b) July-29-2002. Please consult 

the enclosed CDROM for a full colour version.
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the Aktharma Pashaly ASTER scene reveals a fairly high number of negative abundance 

estimates (13.21 has negative violations less than 0.05), however the majority of the pixels 

show good abundance estimates. Figure 10.12 maps the distribution and relative abundance 

of Al-OH bearing minerals for Aktharma-Pashaly in a RGB plot with respectively the Al-

OH kaolinite (kaolinite), the Al-OH (montmorillonite) group and the Al-OH (illite) group. 

It is suggested that ASTER identifi es classes of aluminium hydroxyl bearing minerals, the 

most signifi cant being the detection of the kaolinite group (red). Th e kaolinite group shows a 

radial pattern and they mainly appear near 2 faults in the area, indicated with a yellow line in 

the small ASTER RGB=321 colour composite. Probably mud migration mechanisms might 

be confi ned to faults present in the area and probably highlight argillic altered environments, 

hence indicating mud characteristics from the subsurface. In the ASTER image of May 2001, 

high illite abundances are estimated at the south-west mud volcano vent-group as well as 

at the northern fl ank of the volcano. Probably surface topography infl uences the signal and 

further image pre processing is required to take the albedo infl uences into account.

In terms of provenance information we focus on those sites where we expect fresh mud 

material from the subsurface, which we predominantly found along the circular fl ows and 

anticline faults (fi gure 10.12). Th e unmixing classifi cation results show kaolinite or illite 

types of  clay mineral, which we expect to fi nd in Pliocene sequences. High montmorillonite 

abundances in the central part of the volcano are probably the result from secondary mineral 

alterations.

10.5 Conclusions

VMESMA provides abundance estimates very robust against external factors such as 

illumination, soil background and canopy shade. VMESMA steps the problems from the 

conventional spectral unmixing techniques by performing a standardization on endmember 

spectra to reduce the variability of undesired components, while enhancing the separability 

and spectral features of rocks, soils and vegetation. In fact, the separability between intra-

class sub categories is signifi cantly reduced, thereby simplifying the need of EM submodels 

at reducing the model sensitivity to the natural variability of EM spectra, calibration 

errors, topographic contamination or diff erences in illumination conditions. In association 

with sludge abundance mapping the application of VMESMA showed that after the fi rst 

remediation the residual contamination was still widespread and pyrite oxidation did not yet 

reach a high intensity; consequently is was possible to map sludge abundances using only 

the pyrite sludge EM. Sludge abundance maps July 2000 showed a considerable reduction 

of areas with sludge EM abundances compared to June 1999. However, higher abundances of 

secondary minerals, in particular jarosite, were found indicating oxidation processes, which 

make further monitoring eff orts necessary. VMESMA in association with ASTER, which 

is not a typical hyperspectral sensor in terms of hundreds of spectral bands, is able to detect 

a variety of diff erent clay minerals, which can be used as an analogue for viable petroleum 

system properties.



Chapter 11

A Contextual Algorithm for Detection of 

Mineral Alteration Halos with Hyperspectral 

Remote Sensing

Harald van der Werff  & Arko Lucieer

11.1 Introduction

Th e occurrence of  hydrocarbon seeps at the Earth’s surface indicates that hydrocarbon 

reservoirs leak. Leakage can be active or passive, visible to the human eye (macroseepage) 

or only chemically detectable (microseepage). In the long term, light hydrocarbons that 

are being oxidized by bacteria can, directly or indirectly, change the pH and Eh of the 

surrounding environment. Onshore, this results in formation of oxidation-reduction zones 

that infl uence mineral stability.

As many of the resulting mineral alterations can be mapped by imaging spectrometers, 

remote sensing could be a rapid and cost-eff ective means of hydrocarbon exploration when 

compared to geochemical surveying methods or seismic studies. Th is study demonstrates the 

development and eff ectiveness of an algorithm that combines spectral and spatial information 

in simulated hyperspectral imagery to detect alteration halos around hydrocarbon seepages.

11.2 Onshore hydrocarbon seepages

Due to pressure diff erences in the Earth’s subsurface, hydrocarbons can migrate from 

subsurface reservoirs to shallower levels and eventually to the surface. Link (1952) was the 

fi rst to distinguish macroseeps, which consist of seeping liquids and gases that are visible 

to the human eye, from microseeps, which can only be detected by geochemical means. 

In microseeps, trace quantities of light hydrocarbons (such as methane, ethane, propane, 

butane and pentane) migrate rapidly through a microfracture network, also called a chimney 

(Brown, 2000). Migration of heavier hydrocarbons needs more space: possible paths are 

reservoir rocks acting as carrier bed, unconformities, tectonic structures that breach reservoirs 

or seals, and surface expressions of intrusions such as mud volcanoes and salt domes (Link, 

1952). As a result, migration can vary from near-vertical to lateral movements over long 

distances (Schumacher, 1996). A relation between geochemistry, migration paths and spatial 

distribution at the surface can successfully be made in areas with a simple geological setting. 

Understanding this relation becomes diffi  cult when the geology is more complex.
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Long-term leakage can lead to formation of anomalous oxidation-reduction zones. Aerobic 

and anaerobic bacteria that oxidize the migrating hydrocarbons are, directly or indirectly, 

responsible for the varied and often complex surface manifestations (fi gure 11.1). Observed 

alterations in surface mineralogy include formation of pyrite, calcite, uraninite, elemental 

sulfur, specifi c magnetic oxides and iron sulfi des (Schumacher, 1996). However, the chemical 

processes involved in seepages and resulting surface expressions are still not fully understood. 

Most alterations are not unique for the redox environment of seeping hydrocarbons, which 

makes them diffi  cult to distinguish from alterations caused by other soil processes.

clay minerals

iron ion

ferrous

ferric

Delta C

Radiometrics

Geobotany

soil gas

Geomorphic high
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Figure 11.1 – A schematic overview of anomalies that are commonly found in onshore hydrocarbon 

seepages (after Yang, 1999).
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11.3 Optical Remote Sensing of onshore hydrocarbon seepages

Heavy hydrocarbons have clear absorption features in the refl ective part of the spectrum 

(Cloutis, 1989). Detection of macroseeps with hyperspectral imagery can successfully be made 

by directly mapping hydrocarbons that are present at the surface (Hörig et al, 2001).

Two gases that are commonly found in microseeps, methane and carbondioxide, also have 

clear absorption features in the refl ective part of the spectrum. However, detection of these 

gases is problematic. Carbon-dioxide is already present in the atmosphere, the absorption 

feature of methane is too narrow to allow detection by present day airborne instruments, 

and hydrocarbon seepages are not the only natural source of methane and carbondioxide 

production. Taking into account the temporal variability in gas emissions, the subtle spatial 

variation of gases does not show up against a heterogeneous background (De Jong, 1998). 

Remote sensing of onshore gas emissions is, in contrast to off shore monitoring, disturbed by 

the heterogeneous surface of the Earth and by human infl uences on the atmosphere.

Although direct detection of gases originating from microseeps is problematic, optical remote 

sensing is an excellent tool for detecting microseepage-induced alterations. Almeida-Filho 

(1999) successfully detected bleached redbeds in an approximately 6 km2 area by using band 

ratios of Landsat TM imagery. Th ese results appeared to be consistent with soil gas anomalies 

(ethane, propane, butane and pentane) that had been measured at the same spot. On a meter 

scale, however, indirect detection is hampered by the same problem as direct detection of 

seepages: the signal of the subtle and non-unique alterations resulting from hydrocarbons is 

disturbed by the heterogeneous surface of the Earth. Th e technical question that remains is: 

‘how to separate a non-unique, weak signal from a variable background’.

11.4 Spectral models of hydrocarbon seepages

To improve our understanding of seepage-induced alterations and to describe their spectral 

signal, the number of variables found in nature should be reduced by simulating seepages in 

a laboratory.  Botanical anomalies can be simulated, as the eff ects of the presence of soil gas 

on root systems of plants can already be seen in one growth season (Pysek & Pysek, 1989). 

However, it would take too much time to simulate mineralogical alterations in a laboratory; 

seepages in the fi eld should be used as a ‘natural laboratory’ instead.

Th is ‘chicken and egg’ problem in simulation of mineralogical anomalies can be tackled by 

limiting the simulation to a spectral model that is based on geological models of seepages. 

Schumacher (1996) describes a seepage-induced alteration model in a framework of 

simplifi ed basic reactions and processes. A spectral model of a hydrocarbon seep, as shown in 

fi gure 11.2, could consist of a homogeneous background spectrum (e.g. a soil), linearly mixed 

with spectra of iron sulphides or calcite to form a halo in the homogeneous background. 

Th is model can be made increasingly complex and realistic by decreasing the abundance of 

anomalous minerals, introducing a heterogeneous background, addition of e.g. vegetation 

masks and pixel noise. Th e fi nal step towards the real world situation is to generate ‘hybrid’ 
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images, made from fi eld spectral measurements that have been acquired along transects from 

the central vent to areas outside of the halo.

11.5 Combining the spectral and spatial domains

A possible way to separate and identify the spectral fi ngerprints of seepage-induced 

alterations is by making use of spatial patterns that are commonly observed in seepages. 

At a meter scale, both macroseeps and microseeps often occur as a halo around a central 

vent. On a kilometer scale, the chimneys found in microseepages lead to a halo along the 

rim of a subsurface reservoir, while vents of macroseepages are often lined up along a fault 

or an outcropping carrier bed. Th e distribution can be described as simple, but diff erent 

mathematical shapes at diff erent scales. Th is contextual information allows discrimination 

and, therefore, detection of seepage-induced alterations.

.. An algorithm for combined spectral and spatial detection

Th e fi rst step in detecting an alteration halo is to introduce the spatial pattern of seeps at the 

fi rst stage of image processing. At this stage, there is not any comparison of the image spectra 

with reference spectra to make an identifi cation, the purpose is only to indicate which pixels 

have a halo that is spectrally anomalous from the rest of the image.

We assume that alteration halos show a homogeinity of spectral fi ngerprints that can be 

found in hydrocarbon seepages. Th is homogeinity can be measured by calculating, for each 
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Figure 11.2 – A simulated image cube showing a spectral model of a hydrocarbon seep. Th is model is 

based on fi eld spectra acquired at a seep in Upper Ohaj Valley, California, USA. Th e center of the 

seep consists of a bare soil, while the surrounding homogeneous background consists of a grassland. 

Please consult the enclosed CDROM for a full colour version.
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pixel, the variance in spectral angle of the pixels in a circular neighbourhood set. Th e spatial 

information of the neighbourhood set is summarized in a single variance value assigned to 

the centre pixel. A relatively low value for variance indicates the presence of a spectrally 

homogeneous neighbourhood set.

For every pixel in the image, the algorithm calculates the spectral angles between a number of 

equally spaced pixels N which are on a circle with radius R from the center pixel (fi gure 11.3). 

Both R and N depend on the geological setting and on the spatial resolution of an image, and 

need to be set by an expert.

For any center pixel (xc, yc), the coordinates of the pixels belonging to the circular 

neighbourhood set are given by (Lucieer et al, 2003):

 (11.1){xc,i, yx,i} = {xc - R sin (––––), yc + R cos (––––)}
2 i

N

2 i

N

for i = {0, 1, ..., N-1}.

Th e spectral information of each pixel can be described as a vector V in feature space. Th e 

spectral angle S between the vectors V of all N pixels is calculated by

 (11.2)Si,j = ––––––––––––
Vi º Vj

|| Vi || · || Vj ||

where i and j are pixels in the same neighbourhood set and º denotes vector product. Th e 

number of spectral angles SA in a circular neighborhood set with N pixels is given by

SA =  N - i
N

i=1
 (11.3)
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Figure 11.3 – A circular neighbourhood set with N=8 equally spaced pixels on a circle of radius R. 

Th e homogeinity of this neighbourhood set is summarized in the center pixel as one value, consisting 

of the variance in spectral angles calculated between all the pixels on the circlular neighbourhood.
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See Large graph

Soil around seep

Pure calcite

Mixed spectrum

Figure 11.4 – Th e spectra of pure calcite, a bare soil and an anomalous soil (small graph). Th is 

anomaly consists of an addition of only 1 calcite to the original soil spectrum, resulting in a 

minimal diff erence between the soil spectrum and the anomalous spectrum (large graph).
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Th e mean spectral angle Smean of all N pixels in a neighbourhood set is given by

 (11.4)Smean = –––––––––
   Si,j

SA

N

i=0

N

j=i+1

Finally, the variance Svar in spectral angles of this neighbourhood set is calculated by

 (11.5)Svar = ––––––––––––––––
   √ (Si,j - Smean)

2

SA

N

i=0

N

j=i+1

.. Simulated imagery for demonstrating the algorithm

We produced two diff erent types of simulated images to demonstrate the eff ectiveness of the 

algorithm:

1   A hybrid image that has been constructed from fi eld spectral measurements of a natural 

oil seep in Upper Ojai Valley, California, USA (fi gure 11.2). Th e crisp halo that has been 

observed in the fi eld has a size of approximately 20 meters in diameter, and consists of a 

bare soil in a grassland background.

2  Four artifi cial images that have been constructed from both fi eld spectral measurements 

and spectra taken from the JPL spectral library (Grove et al., 1992). Th e background of 

these images is a soil spectrum that has also been acquired near the oilseep in  Upper 

Ojai Valley. A spectrum of pure calcite has been linearly mixed with the background soil 

spectrum to make an anomaly of 1 calcite enrichment in the shape of a halo (fi gure 

11.4). Th is halo is at 30-40 meters distance from the central vent. Both the inner and outer 

edges of the halo are fuzzy: the 1 calcite enrichment gradually disappears over a distance 

of 20 meters. To increase detection complexity, random pixel noise with a maximum of 

1 of the pixel value has been added to these four images. Th is results in an equal signal 

strength of random noise with the calcite anomaly that we want to detect. Furthermore, 

the background soil spectrum has a heterogeneity in value, ranging in strength from 0, 

10, 30 up to a maximum of 70 of the original background values. Both pixel noise and 

background heterogeneity have been added multiplicative, i.e. the stronger the spectral 

signal, the stronger the noise. Th ough this is diff erent from reality, it is a desirable 

eff ect when studying the detection of weak but consistent signals in a heterogeneous 

environment. Another simplifi cation is that the applied background patterns are equal 

in all bands, for all images. In reality, the spectral signature of the background may vary 

throughout diff erent wavelengths. However, we assume it to be constant for specifi c 

wavelength regions such as VIS, NIR and SWIR.

All simulated images cover only the SWIR region of the refl ective spectrum, as in this part 

the absorption features of calcite are most pronounced. Th e spectral resolution is set to match 

the AVIRIS imaging spectrometer. Th e spatial resolution is set to a pixel size of 1 by 1 meter.
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11.6 Results

Figure 11.5 shows the results of applying the algorithm on the hybrid image made from fi eld 

spectral measurements. Th e value of the dark pixels in the center of the images are about a 

factor 8 lower than the values of the bright neighbouring pixels. Th is clearly indicates the 

presence of a spectrally homogeneous halo for the center pixels.

Th e values used for the radius, R, and the number of pixels in the neighbourhood set, N, 

are 10, 25 and 40 meter and 8, 12 and 20, respectively. In this example, the eff ect of choosing 

diff erent values for R mainly infl uences the number of center pixels that can be identifi ed 

as having a halo; choosing a value higher than half the width of the halo would result in 

no detection at all. Th e eff ect of choosing diff erent values for N has a strong impact on the 
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Figure 11.5 – Th e eff ect of diff erent values for radius R and the number of pixels in the 

neighbourhood set N. Top-left: R=10, N=8. Top-right: R=25, N=10. Bottom-left: R=40, N=20. 

Bottom-right: Band 160 (1882 nm) of the simulated hybrid image.
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Figure 11.6 – Displayed on the left is SWIR band 160 (1882 nm) of the simulated images with 

diff erent background heterogeneity, increasing from 0, 10, 30 to 70 variability from the original 

background value. On the right the results of the algorithm for the simulated images, which is hardly 

aff ected by the increasing heterogeinity in the images.



210 – H. van der Werff & A. Lucieer

pattern observed in the output values. Despite the amount of computing power needed, the 

value for N should not be set too low in order to avoid these patterns.

Figure 11.6 shows the results of applying the algorithm to the simulated images that contain 

the 1 anomaly, 1 random pixel noise and diff erent levels of background heterogeneity. Th e 

values used for R and N are the same as the values used for the hybrid image. Th e output 

appeared to be very noisy, and the values of the center pixels (which have a halo) are in the 

same range as the values found in the other pixels. Th e results for diff erent values of R and 

N needed to be summed to enhance the output. However, the algorithm is able to detect the 

halo of 1 calcite enrichment in all simulated images.

11.7 Discussion and conclusions

Remote sensing of onshore macroseepages, which are visible to the human eye, has been 

succesfully carried out in the past. However, remote sensing of invisible microseeps at a 

small scale has not resulted in satisfactory results. Th e infl uence of oxidizing hydrocarbons on 

the surrounding environment is usually smaller than the infl uence of other soil processes in 

particular and natural variation in general. Moreover, the alterations that are being observed 

are not unique for oxidizing hydrocarbons. Problems in detecting subtle variations in a 

natural background are not only encountered in remote detection of microseepages, but also 

in many other applications of Earthobservation.

Th is study shows that combining spectral and spatial information in remotely sensed images 

is successful. Applying knowledge on hydrocarbon seepages from the fi eld in an algorithm 

allows the detection of a fuzzy alteration halo consisting of only 1 enrichment in calcite.

Of course, this algorithm still has some weaknesses: the shape of the halo needs to closely 

resemble a circle, and the halo needs to be complete and not partial covered by e.g. vegetation. 

Future work will concentrate on these weaknesses: Spectrally, the number of false anomalies 

that would be detected in realistic images needs to be reduced by comparing the mean 

spectrum found at a specifi c radius to a reference spectrum (e.g. calcite or sulphur). Spatially, 

a second step is a region growing segmentation algorithm that includes spectral, spatial and 

shape parameters in our detection procedure.



Chapter 12

Image Segmentation Methods for 

Object-based Analysis and Classifi cation

Th omas Blaschke, Charles Burnett & Anssi Pekkarinen

12.1 Introduction

Th e continuously improving spatial resolution of remote sensing (RS) sensors sets new 

demand for applications utilising this information. Th e need for the more effi  cient extraction 

of information from high resolution RS imagery and the seamless integration of this 

information into Geographic Information System (GIS) databases is driving geo-information 

theory and methodology into new territory. As the dimension of the ground instantaneous 

fi eld of view (GIFOV), or pixel (picture element) size, decreases many more fi ne landscape 

features can be readily delineated, at least visually. Th e challenge has been to produce proven 

man-machine methods that externalize and improve on human interpretation skills. Some 

of the most promising results in this research programme have come from the adoption of 

image segmentation algorithms and the development of so-called  object-based classifi cation 

methodologies. In this chapter we describe diff erent approaches to  image segmentation and 

explore how segmentation and object-based methods improve on traditional pixel-based 

image analysis/classifi cation methods.

According to Schowengerdt (1997) the traditional image processing/image classifi cation 

methodology is referred to as an  image-centred approach. Here, the primary goal is to produce 

a map describing the spatial relationships between phenomena of interest. A second type, 

the  data-centred approach, is pursued when the user is primarily interested in estimating 

parameters for individual phenomena based on the data values. Due to recent developments 

in image processing the two approaches appear to be converging: from image and data 

centred views to an  information-centred approach. For instance, for change detection and 

environmental monitoring tasks we must not only extract information from the spectral 

and temporal data dimensions. We must also integrate these estimates into a spatial 

framework and make a priori and a posteriori utilization of GIS databases. A decision support 

system must encapsulate manager knowledge, context/ecological knowledge and planning 

knowledge. Technically, this necessitates a closer integration of remote sensing and GIS 

methods. Ontologically, it demands a new methodology that can provide a fl exible, demand-

driven generation of information and, consequently, hierarchically structured semantic rules 

describing the relationships between the diff erent levels of spatial entities.

Several of the aspects of geo-information involved cannot be obtained by pixel information 

as such but can only be achieved with an exploitation of neighbourhood information and 

context of the objects of interest. Th e relationship between ground objects and image objects 
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examined in remote sensing representations must be made explicit by means of spatial 

analysis and the construction of a semantic network. In the following sections we contrast 

conventional image classifi cation/analysis methods to the new segmentation-based methods; 

review some current progress in image segmentation and RS/GIS integration, which adds 

topological and hierarchical rules to build databases of context information; and present two 

examples to demonstrate the utility of the segmentation-based methodology.

.. Th e RS/GIS image analysis continuum

Th ematic mapping from digital remotely sensed images is conventionally performed by 

pixelwise statistical classifi cation (Schneider & Steinwender, 1999, Blaschke & Strobl, 2001). 

Pixelwise analysis utilizes three of the attributes of a pixel; Position, Size and Value (de Kok et 

al., 2000). Th e size attribute can be usually considered as constant, except for imagery acquired 

in high relief areas (Burnett et al., 1999). Th e main drawback of pixelwise classifi cation is that 

it largely neglects shape and context aspects of the image information, which are among the 

main clues for a human interpreter. A limited form of contextual information can be stored 

in the Value parameter. For example, texture or other relevant information can be analysed 

from the immediate neighbourhood of the pixel and result can be assigned to the central 

pixel. Examples of this are moving window fi lters which can be implemented with help 

of convolution masks ( Jain et al., 1995). In object oriented analysis shape and context are 

a. b. c. d. e.
pixelwise pixelwise per-parcel segmentation segmentation

classification + as +
grouping pre-classification object

in GIS step relational
database 62

30

Figure 12.1 – A continuum of classifi cation methods: (a) pixelwise classifi cation, utilizing 

spectral information; (b) pixelwise with grouping of results into groups in a GIS; (c) per-parcel 

classifi cation, where GIS data is used to partition the scene before a pixelwise classifi cation; (d) 

single-scale segmentation prior to pixelwise classifi cation, and; multi-scale segmentation as part of 

object relationship database building, with classifi cation done by querying spectral and spatial object 

parameters. Please consult the enclosed CDROM for a full colour version.
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clumped into a fourth attribute, that defi ning Fellowship; ‘to which pixel population does this 

pixel belong’ (de Kok et al., 2000). It has been suggested that classifying remotely sensed 

images in pixelwise fashion (using only the fi rst three pixel attributes) is a special case of 

the super-set of object-based classifi cation methodologies which utilise all four (Schneider 

& Steinwender, 1999; de Kok et al., 2000). Th is is not illogical and we propose the following 

continuum of classifi cation methods incorporating more or less fellowship information 

(fi gure 12.1).

.. New sensors, new image/ground object relationships

Until recently, the 20m spatial resolution of SPOT was regarded as ‘high spatial resolution’. 

Since the launch of IKONOS 2 in 1999 a new generation of very high spatial resolution 

(VHR) satellites was born, followed by Quick Bird late 2001. Th e widely used Landsat 

and Spot sensors are now called ‘medium-resolution’. Especially the new satellite sensor 

generation meet the strong market demands from end-users, who are interested in image 

resolution that will help them observe and monitor their specifi c objects of interest. Th e 

increasing variety of satellites and sensors and spatial resolutions lead to a broader spectrum 

of applications but not automatically to better results. Th e enormous amounts of data created 

a strong need for new methods to exploit these data effi  ciently. In addition, the complexity 

of the relationship of pixel and object make it necessary to develop additional methods of 

classifi cation.
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Figure 12.2 – Relationship between the remotely sensed image (survey) resolution (GIFOV) and 

real-world object diameter. Close to the diagonal, the diameter of the objects and the GIFOV will be 

nearly equal and image objects (groups of H-res pixels representing a single real-world object) may 

reduce to 1-pixel image-objects. For situations where the sensor GIFOV is larger than the object of 

interest, we are in L-res or ‘mixed-pixel ’ territory. (Image modifi ed from Burnett 2002.)
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Th e number of pixels containing more than one land cover type is a function of the 

complexity of the scene, the spatial resolution of the sensor and the classifi cation scheme. 

Th erefore spatial resolution is among other factors important to the defi nition of classes. 

Th e relationship is based on the simple fact that higher resolution images contain a smaller 

percentage of pixels regarded as ‘boundary pixels’, falling into two or more diff erent land cover 

classes (Cao & Lam, 1997, Mather, 1999). Th e term ‘ mixed pixel’ does not imply that the scale 

of observation is inappropriate or does not match the scale of variation of the phenomenon 

under investigation, although a large proportion of mixed pixels are often associated with a 

too detailed classifi cation system and/or an inappropriate scale for the respective application. 

For example, imagine a class ‘buildings’ consisting of sparsely distributed single houses of 

10 by 10m. A Landsat 30m image will never result in ‘pure pixels’ but an IKONOS image 

would, although of course there will be many mixed pixels remaining but their percentage 

decreases. In natural environments we have another problem that there will always be small 

gaps e.g. in forest’s canopy which infl uence the result, or their might be classes which are 

specifi cally mosaics of single entities of specifi c spatial arrangements of classes. It may be 

necessary to stress the fact that even though the relative number of mixed pixels decreases 

their absolute number usually increases. Th e mixed pixel problem can be examined with the 

aid of fi gure 12.2, which describes the relationship between pixel size and object-of-interest 

size. Th e nomenclature L-res and H-res refers to the relationship between the pixel GIFOV 

and the median radius of the real-world objects being imaged (fi gure 12.1): if the GIFOV is 

signifi cantly smaller than this diameter, than we are dealing with an H-res mode – at least for 

that object type! Th e corollary is the L-res scenario (Woodcock & Strahler, 1987).

As Mather (1999) points out, where this is clearly not the case then a small proportion of 

pixels will be located in a ‘boundary region’, e.g. between adjacent fi elds, and may, therefore, 

described as ‘mixed’. But Cihlar (2000) emphasises, that even in high-resolution and 

radiometrically well corrected data, some variation will remain which can be regarded as 

noise or can lead to mixed pixels falling partially into two or more classes. Sensor systems 

have a specifi c GIFOV – simply put: a certain spatial resolution. Several targets/classes of 

interest may be found within one unit of GIFOV. Usually, only a single category is assigned 

to each pixel. But in fact one pixel could represent more than one target/class.

.. From pixels to image-objects

It will be useful to clarify the terms pixel and image-object. A pixel is normally the smallest 

unit of analysis of RS imagery. A pixel’s dimensions are determined by the sensor and scene 

geometry models, giving the GIFOV. Th e phrase ‘normally the smallest’ is applied because 

there have been attempts to decompose the spectral signature of pixels and thus do sub-

pixel analysis (Aplin & Atkinson, 2001; Asner & Heidebrecht, 2002; Lucas et al., 2002; 

Verhoeye & de Wulf, 2002). Image-objects are defi ned by Hay et al. (2001) as... basic entities, 

located within an image that are perceptually generated from H-res pixel groups, where each 

pixel group is composed of similar digital values, and possesses an intrinsic size, shape, and 

geographic relationship with the real-world scene component it models.

Schneider & Steinwender (1999) suggest a simpler defi nition for image-objects, ‘groups of 

pixels with a meaning in the real world’. As image GIFOV decreases we are faced with new 

challenges: we can resolve more and more types of real world objects. Th e internal or ‘within-

object heterogeneity’ increases and the spectral separability between image objects drops. Th e 
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benefi t of going to a segmentation approach is that you permit the incorporation of more 

expert knowledge – more specifi cally, you can incorporate more context information. Th is 

may seem at fi rst to be counter-productive: are we not searching for methods which limit the 

amount of a priori information necessary to do the classifi cation? Th e answer is that ‘simple’ 

methods to monitor earth processes automatically is a myth propagated in the 1980s. Th e fact 

is that our world is complex and our ‘windows to the world’ (RS images) are limited (Burnett 

& Blaschke, in press). Segmentation begets image objects, permitting the incorporation of 

spatial information as mutual relationships to these objects.

Th e incorporation of segment-level spatial information to the analysis of RS imagery 

introduces new dimensions to the actual analysis of the data. Instead of relying on only the 

Value, Location and Size attribute of single pixel, we can incorporate Fellowship (topology-

related) attributes, for example image object size, shape or number of sub-object. Th is allows 

us to better utilise sophisticated GIS functions in analysing the data, e.g. to describe the 

spatial complexity of the objects, their spatial and spectral embeddedness in relation to 

neighbouring objects etc. We speak of objects if we can attach a meaning or a function to 

the raw information. Generally, the object is regarded to be an aggregation of the geometric, 

thematic and topologic properties. Th e topologic relations between the cells the object 

consists of can be examined once the user has defi ned his or her objectives, classifi cation 

scheme and scale of analysis.

12.2 Image segmentation review

.. What is image segmentation?

One possible strategy to model the spatial relationships and dependencies present in RS 

imagery is image segmentation.  Image segmentation is the partitioning of an array of 

measurements on the basis of homogeneity. To be more exact, segmentation is the division 

of an image into spatially continuous, disjoint and homogeneous regions. Segmentation is 

powerful and it has been suggested that image analysis leads to meaningful objects only 
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Figure 12.3 – Pixels with same spectral entities vs. objects with averaged spectral properties and 

evolving spatial properties.
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when the image is segmented in ‘homogenous’ areas (Gorte, 1998, Molenaar, 1998, Baatz 

& Schäpe, 2000) or into ‘relatively homogeneous areas’. Th e latter term refl ects better the 

‘near-decomposability’ of natural systems as laid out by Koestler (1967) and we explicitly 

address a certain remaining internal heterogeneity. Th e key is that the internal heterogeneity 

of a parameter under consideration is lower than the heterogeneity compared with its 

neighbouring areas.

Although image segmentation techniques are well known in some areas of machine vision 

(see Narendra & Goldberg, 1980, Fu & Mui, 1981, Haralick & Shapiro, 1985, Cross et al., 

1988), they were rarely used for the classifi cation of earth observation (EO) data. One of 

the main reasons for this is that most of these algorithms were developed for the analysis 

of patterns, the delineation of discontinuities on materials or artifi cial surfaces, and quality 

control of products, in essence. Th ese goals diff er from our goals: the discretisation of EO 

remote sensing imagery aims at the generation of spectrally homogeneous segments, which 

show the inherent dimensions/objects of the images.

Before delving more deeply into the diff erent algorithms that have been developed for image 

segmentation, and more specifi cally, for remotely sensed EO image segmentation, we would 

like to demonstrate the complexity of the process. For a 1 by 1 array, we can only partition the 

array only into 1 segment (fi gure 12.4). For a 2 by 2 array, we get a theoretical maximum of 16 

combinations of segments or partitions. Note that partitions can be of any size greater than or 

equal to 1, and are of course, limited to the size of the array. Partitions must not overlap (they 

are disjoint) and the whole array must be partitioned. Th is means that for a typical 1:20,000 

scale aerial photograph scanned to produce a 60 cm GIFOV, and which thus has 3000 rows 

by 3000 columns the theoretical maximum number of partitions is as large as 2 to the power 

17994000! In real life, however, we would never be interested in exploring all these diff erent 
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Figure 12.4 – Th eoretical partitioning of 2D arrays. Th e grey boxes are meant to be the array, with 

a grey level value (GLV) shown by the ‘greyness’. Th e coloured lines (circles, ovals, etc.) are vectors 

that ‘partition’ or ‘discretize’ these 2D arrays. Please consult the enclosed CDROM for a full colour 

version.
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discretization instances, rather we want to intelligently chose an optimized partitioning. In 

fact, we probably want to chose 3 or more useful partitions of a single scene – but we will 

reserve a discussion of the use of multiple partitions (or multi-scale segmentation) until 

later. Still, it should be noted that we still have to use our expert knowledge to calibrate the 

segmentation algorithm so that the image objects that the segments delineate and the real 

world objects-of-interest match as closely as possible. However, let’s fi rst take a look at some 

of the tools that have been developed for image segmentation.

.. Types of segmentation

Traditional image segmentation methods have been commonly divided into three approaches: 

pixel-, edge and region based segmentation methods.

Pixel based methods include image thresholding and segmentation in the feature space. Th ese 

methods do not necessarily produce a result which fulfi ls the requirement and defi nition of 

segmentation, and therefore the resulting output needs to be clumped. In other words, 

each spatially continuous unit (often referred as connected component in machine vision 

literature) needs to be assigned a unique label.

In  edge based segmentation methods, the aim is to fi nd edges between the regions and 

determine the segments as regions within these edges. From this point of view, edges are 

regarded as boundaries between image objects and they are located where changes in values 

occur. Th ere are various ways to delineate boundaries but in general the fi rst step of any edge-

based segmentation methods is edge detection which consists of three steps ( Jain et al., 1995): 

fi ltering, enhancement and detection. Filtering step is usually necessary in decreasing the 

noise present in the imagery. Th e enhancement aims to the revealing of the local changes in 

intensities. One possibility to implement the enhancement step is to us high-pass fi ltering. 

Finally, the actual edges are detected from the enhanced data using, for example, thresholding 

technique. Finally, the detected edge points have to be linked to form the region boundaries 

and the regions have to be labelled.

 Region-based segmentation algorithms can be divided into region growing, merging and 

splitting techniques and their combinations. Many region growing algorithms aggregate 

pixels starting with a set of seed points. Th e neighbouring pixels are then joined to these 

initial ‘regions’ and the process in continued until a certain threshold is reached. Th is 

threshold is normally a homogeneity criterion or a combination of size and homogeneity. 

A region grows until no more pixels can be attributed to any of the segments and new seeds 

are placed and the process is repeated. Th is continues until the whole image is segmented. 

Th ese algorithms depend on a set of given seed points, but sometimes suff ering from lacking 

control over the break-off  criterion for the growth of a region. Common to operational 

applications are diff erent types of texture segmentation algorithms. Th ey typically obey a 

two-stage scheme ( Jain & Farrokhnia, 1991, Mao & Jain, 1992, Gorte, 1998, Molenaar, 1998, 

Hoff man et al., 1998).

In region merging and splitting techniques the image is divided into subregions and these 

regions are merged or split based on their properties. In region merging the basic idea is 

to merge segments starting with initial regions. Th ese initial regions may be single pixels of 

objects determined with help of any segmentation technique. In region splitting methods the 

input usually consists of large segments and these segments are divided to smaller units if 

the segments are not homogeneous tough. In an extreme case region splitting starts with the 
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original image and proceeds by slitting it into n rectangular sub-images. Th e homogeneity 

of these rectangles is studied and each rectangle is recursively divided into smaller regions 

until the homogeneity requirement is fulfi lled (fi gure 12.5). In both, region merging and 

splitting techniques, the process is based on a high number of pairwise merges or splits. 

Th e segmentation process can be seen as a crystallisation process with a big number of 

crystallization seeds. Th e requirement for the maintenance of a similar size/scale of all 

segments in a scene is to let segments grow in a simultaneous or simultaneous-like way.

Sometimes seen separately, is the group of  ‘split-and-merge’ algorithms (Cross et al., 1988). 

Th ey start by subdividing the image into squares of a fi xed size, usually corresponding to 

the resolution of a certain level in a quad tree. Th ese leaves are then tested for homogeneity 

and heterogeneous leaves are subdivided into four levels while homogeneous leaves may be 

combined with three neighbours into one leaf on a higher level etc.
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Figure 12.5 – Examples of region splitting and merging techniques.
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.. Segmentation of Remotely Sensed data: state of the art

As stated above, the idea of segmentation is not new but it is becoming more widespread 

within the EO/RS community recently. While the foundations of the basic principles were 

laid out in the 80ies (see Haralick & Shapiro, 1985) and various applications demonstrated 

the potential in the following years for environmental applications (e.g. Véhel & Mignot, 

1994, Panjwani & Healey, 1995, Lobo et al., 1996). Mainly the availability in commercial 

software packages catalysed a boost of applications more recently (Baatz & Schäpe, 2000, 

Blaschke & Strobl, 2001). Most approaches create segments which are in any sense regarded 

as being homogeneous by utilising geostatistical analysis (Hofmann & Böhner, 1999) 

and similarity approaches such as: unsupervised texture recognition by extracting local 

histograms and a Gabor wavelet scale-space representation with frequency (Hofmann et al., 

1998); image segmentation by Markov random fi elds and simulated annealing; or Markov 

Random Fields (MRF) using a Maximum a posteriori (MAP) probability approach. Th e 

MRF method generally classifi es a particular image into a number of regions or classes. Th e 

image is modelled as a MRF and the MAP probability is used to classify it. Th e problem is 

posed as an objective function optimisation, which in this case is the a posteriori probability 

of the classifi ed image given the raw data which constitutes the likelihood term, and the prior 

probability term, which due to the MRF assumption is given by the Gibb’s distribution. MRF 

was already exploited for an unsupervised classifi cation by Manjunath & Chellappa (1991).

Hoff man & Böhner (1999) proposed an edge based method in which they calculate a 

representativeness of each pixel for its neighbours. Th e image segmentation is based 

on the representativeness values of each pixel. At fi rst these values are calculated by a 

harmonic analysis of the values for each spectral channel. Th e minima in the matrix 

of representativeness – typically arranged in pixel-lineaments – represent spatial 

unsteadiness in the digital numbers. For the image segmentation, the vectorised minima 

of the representativeness delimit areas consisting of pixels with similar spectral properties 

(spatial segments). A convergence index is combined with a single-fl ow algorithm for the 

vectorisation of the representativeness minima. A standardisation is performed through the 

calculation of a convergence index for every pixel in a 3 by 3 window.

Dubuisson-Jolly & Gupta (2000) developed an algorithm for combining colour and texture 

information for the segmentation of colour images. Th e algorithm uses maximum likelihood 

classifi cation combined with a certainty based fusion criterion. One of the most promising 

approaches is developed by Hofmann et al. (1998) and based on a Gabor wavelet scale-

space representation with frequency-tuned fi lters as a natural image representation. Locally 

extracted histograms provide a good representation of the local feature distribution, which 

captures substantially more information than the more commonly used mean feature values. 

Homogeneity between pairs of texture patches or similarity between textured images in 

general can be measured by a non-parametric statistical test applied to the empirical feature 

distribution functions of locally sampled  Gabor coeffi  cients. Due to the nature of the 

pairwise proximity data, this algorithm systematically derives a family of pairwise clustering 

objective functions based on sparse data to formalize the segmentation problem. Th e objective 

functions are designed to possess important invariance properties. A clustering algorithm has 

been developed, that is directly applicable to the locally extracted histograms. It applies an 

optimisation technique known as multi-scale annealing to derive heuristic algorithms to 
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effi  ciently minimize the clustering objective functions. Th is algorithm has not been tested 

comprehensively and never been implemented within an operational/commercial software 

environment.

From most research following a segmentation approach it is argued that image segmentation 

is intuitively appealing. Human vision generally tends to divide images into homogeneous 

areas fi rst, and characterises those areas more carefully later (Gorte, 1998). Following this 

hypothesis, it can be argued that by successfully dividing an image into meaningful objects 

of the land surface, more intuitive features will result. Th e problem is to defi ne the term 

‘meaningful objects’. Nature hardly consists of hard boundaries but it is also not a true 

continuum. Th ere are clear, but sometimes soft, transitions in land cover. Th ese transitions are 

also subject to specifi c defi nitions and subsequently dependant on scale. Th erefore, segments 

in an image will never represent meaningful objects at all scales, for any phenomena.

In the modelling stage characteristic features are extracted from the textured input image 

which include spatial frequencies ( Jain & Farrokhnia, 1991, Hoff man et al., 1998), Markov 

Random Field models (Mao & Jain, 1992, Panjwani & Healey, 1995), co-occurrence matrices 

(Haralick et al., 1973), wavelet coeffi  cients (Salari & Zing, 1995), wave packets (Laine & Fan, 

1996) and fractal indices (Chaudhuri & Sarkar, 1995). In the optimisation stage features are 

grouped into homogeneous segments by minimising an appropriate quality measure. Th is is 

most often achieved by a few types of clustering cost functions ( Jain & Farrokhnia, 1991, Mao 

& Jain, 1992, Hoff man et al., 1998). A further possibility is the watershed transformation. 

Bendjebbour et al. (2001) defi ned a general evidential Markovian model and demonstrated 

that it is usable in practice [to do what?]. Diff erent simulation results show the interest 

of evidential Markovian fi eld model-based segmentation algorithms. Furthermore, they 

described a variant of generalized mixture estimation, making possible the unsupervised 

evidential fusion in a Markovian context. It has been applied to the unsupervised 

segmentation of real radar and SPOT images showing the relevance of these models and 

corresponding segmentation methods. Th ese approaches are just examples of what’s available 

in scientifi c computing but most of these approaches are far from being operational.

.. Operational image segmentation frameworks

Per-fi eld classifi cation approaches have shown good results in studies (e.g. Lobo et al., 

1996). Th eir results are often easier to interpret than those of a per-pixel classifi cation. Th e 

results of the latter often appear speckled even if post-classifi cation smoothing is applied. 

‘Field’ or ‘parcel’ refers to homogenous patches of land (agricultural fi elds, gardens, urban 

structures or roads) which already exist and are superimposed on the image. Some studies 

(e.g. Janssen, 1993, Aplin et al., 1999) indicate that the methodology is positively contributing 

to the classifi cation of remote sensing imagery of high to medium geometric resolution. Th is 

classifi cation technique is especially applicable for agricultural fi elds ( Janssen, 1993, Abkar & 

Mulder, 1998). Distinct boundaries between adjacent agricultural fi elds help to improve the 

classifi cation due to the fact that boundaries in an agricultural landscape are relatively stable 

while the cropping pattern (also within the lots) changes often.

An alternative to approaches based on the idea of fi nding homogeneous areas in an 

image is the  multi-fractal image analysis. Th e only operational approach widely available 

is implemented in a software called FracLab. FracLab is a Matlab toolbox for the multi-
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fractal analysis of sets. It is produced by the Groupe Fractales of INRIA, Paris, France. Th e 

descriptions here are based closely on the works of Jacques Vehel. In the Multi-fractal 

approach the image is modelled not by a function but by a measure . Th is allows the role of 
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Figure 12.6 – Images a – f represent MAX Hoelder exponent of multifractal segmentation images of 

diff erent parameters set-up for Band 4 (segment I).
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resolution in image interpretation to be emphasised. Th e basic assumptions of the approach 

are the:

•   Relevant information for image analysis can be extracted from the Hölder regularity of 

the measure 

•   Analysis is at three levels

•   Th e pointwise Hölder regularity of  at each point

•   Variation of the Hölder regularity of  in local neighbourhoods

•   Th e global distribution of regularity of a whole scene

•   Th e analysis is independent of translation and scale

Compared to other approaches to image segmentation or fi ltering, information about whole 

images is used to analyse each point instead of local comparison. Th e main diff erence between 

classic and multi-fractal methods is in the way they deal with regularity. Th e former try to 

obtain smoother versions of images, possibly at diff erent scales, but multi-fractal analysis tries 

to obtain information directly from singular measures. Edges, for instance, are not considered 

as points where large variations of a signal still exist after smoothing, but as regions whose 

regularity is diff erent from the background regularity in the raw data. Th is approach has 

merit for analysis of complex images.
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Figure 12.7 – Images a-d represent diff erent Hoelder exponent images for Band 4 and 7 of Landsat 5.
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Where grey levels of images are used in classic analysis, Hölder regularity is used for multi-

fractal analysis. Th is is justifi ed in situations where, as is common in complex images, 

important information is contained in the singular structure of image elements. Multi-fractal 

analysis will, for instance, fi nd boundaries between texture regions as opposed to boundaries 

within textures, which is normal in classic methods.

Th e  fractal net evolution approach (FNEA) was documented by Baatz & Schäpe (2000) and 

successful applications already exist (de Kok et al., 1999, Blaschke et al., 2000, Blaschke et 

al., 2001, Schiewe & Tufte, 2002, Neubert & Meinel, 2002, Hay et al., 2003). Th e FNEA is 

a region merging technique and starts with 1-pixel image objects. Image objects are pairwise 

merged one by one to form bigger objects. In this conceptualisation the procedure becomes a 

special instance of an assignment problem, known as pairwise data clustering. In contrast to 

global criteria, such as threshold procedures, decisions are based on local criteria, especially 

on the relations of adjacent regions concerning a given homogeneity criterion. In such an 

optimisation procedure each decision concerning a merge is based on all previous decisions 

or merges at least in its local vicinity. Th erefore such a procedure includes to a certain degree 

historicity which can cause problems for reproducibility. Th e solution for this problem is the 

optimisation procedures and the homogeneity criteria which are maximizing the constraints 

in the optimisation process (Baatz & Schäpe, 2000).

12.3 Extending segmentation to an object-based analysis and 
classifi cation

For many applications, a segmentation procedure is only a fi rst, mechanistic step. Exceptions 

are approaches where the segmentation is performed on classifi cation data and their 

respective class uncertainty values (e.g. Abkar & Mulder 1998, Klein et al., 1998). But, 

generally, the research interest is much deeper and image processing goes much further. 

Most research projects aim to map 1 to 1 the delineated (segmented) image objects to real-

world entities within the geographic extent of the scene being assessed. Th e term image 

objects refers to the individually resolvable entities located within a digital image which are 

perceptually generated from images (Hay et al., 2001). In high resolution images a single 

real-world object is modelled by many individual pixels whereas low resolution implies that 

a single pixel represents the integrated signal of many (smaller) real world objects (Hay et 

al., 2003). In a remote sensing image, both situations occur simultaneously. For example, a 

1 m resolution image of a forest canopy, where each tree crown exhibits a 10 m diameter, 

each crown image object will be composed of many pixels. Th e 1m pixel is high resolution in 

relation to the crown object it models. However, each 1 m pixel will also be composed of the 

integrated refl ectance from many needles/leaves and branches. Th us, it will be low resolution 

in relation these individual crown components. As a result, image and objects tend to be 

composed of spatially clustered pixels that exhibit high spatial autocorrelation because they 

are all part of the same object. Because an ‘ideal’ object scale does not exist (Marceau, 1999), 

objects from diff erent levels of segmentation have to be utilised for many applications.

In remote sensing, a single sensor correlates with range of scales rather than a single scale. 

Th e detectability of an object can be treated relative to the sensor’s resolution. A coarse rule 
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of thumb is that the scale of image objects to be interpreted must be signifi cantly bigger 

than the scale of image noise relative to texture (Haralick & Shapiro, 1985). Th is ensures that 

subsequent object oriented (OO) image processing is based on meaningful image objects. 

Among the most important characteristics of any segmentation procedure is the homogeneity 

of the objects. Only if contrasts are treated consistently, good results are expected (Baatz & 

Schäpe, 2000). Furthermore, the resulting segmentation should be reproducible and universal 

which allows the application to a large variety of data. Baatz & Schäpe argue that multi-

resolution image processing based on texture and utilising fractal algorithms can fulfi l all the 

main requirements at once.

Existing approaches show advantages but also some potential pitfalls of segmentation 

approaches for extracting geoinformation and useful landscape elements on ‘real’ (earth) 

surfaces (Blaschke et al., 2000, Blaschke & Strobl, 2001). Th e ‘representativeness approach’ 

(Hofmann & Böhner, 1999) mentioned earlier provides a good representation of the local 

feature distribution, which captures substantially more information than the usually used 

mean feature values. Th is one and other boundary-forming techniques (Schneider et al., 1997) 

and segmentation approaches (Gorte, 1998, Molenaar, 1998, Cheng, 1999, Dubuisson-Jolly 

& Gupta, 2000) provide good results for test areas but are not necessarily using all context 

information beyond the spectral information of neighbouring pixels such as texture, shape, 

directionality, spatial distribution within the study area, connectivity etc. But we strongly 

believe that this contextual information is the key to advanced classifi cations.

Although practically all segmentation procedures result in crisp objects, there are several ways 

to treat continuous transitions and fuzziness of objects. One strategy is to partition an image 

at several levels as discussed before and to utilize information at the fi nest, in most cases 

mechanistic level to express graininess at the higher level. Th e smallest spatial unit is still 

crisp except in the approach of Gorte (1998) but the entities at the superior level can be built 

up in a fuzzy decision process.

An important family of methods that strive to improve accuracy of classifi cation are those 

using  fuzzy sets. With this concept each pixel may have fuzzy membership with more 

than one class expressed as degree of its membership to each class (values range between 

0 and 1). Training data for fuzzy classifi cation need not be homogeneous as is desirable for 

conventional hard classifi ers. Th roughout the classifi cation procedure one needs to assign 

known portions of mixing categories. Popular fuzzy set based approaches are the fuzzy c-

means clustering (FCM) or the possibilistic c-means clustering (PCM). Th e fuzzy classifi ers 
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Figure 12.8 – A multi-resolution image segmentation approach.



Image Segmentation Methods for Object-based Analysis and Classification – 225

produce images showing the degree of membership of pixels to stated categories. One caveat 

of the fuzzy set based methods is that he accuracy of fuzzy classifi cation depends to a high 

degree on the complete defi nition of training data sets. Foody (2000) remarks that untrained 

classes will only display membership to trained classes, which can introduce a signifi cant bias 

to classifi cation accuracy.

An advanced method is the use of (artifi cial)  neural network classifi ers (ANN) borrowed 

from artifi cial intelligence research. Training data together with a known land-cover class (the 

input layer) are fed into the neural network system (the hidden layer). Th e algorithms inside 

the network try to match training data with the known class spectra patterns and produce an 

output layer together with errors of non-matching neural nodes. Th e procedure restarts trying 

to minimize errors. Th e process can be repeated several times. For the classifi cation of specifi c 

objects neural networks have proven to be more accurate than conventional methods (Civco, 

1993; Foschi & Smith, 1997; Skidmore et al., 1997). Main points of critique include:

•   Accurate meaningful results require good training data sets; otherwise outputs will not be 

very reliable.

•   Th e classifi cation procedure needs the adjustment of various parameters which highly 

increases complexity of the whole system and seems to limit its usefulness.

In the following chapter, we demonstrate two applications and go into the classifi cation stage 

whereby we use explicit rules and a semantic network for classifi cation aiming to overcome 

these shortcomings of ANN by making the rules transparent.

12.4 Examples of applications

.. Segmentation in multi-source forest inventory

One, and increasingly popular, application fi eld of remote sensing is  multi-source forest 

inventory (MSFI). Since the introduction of fi rst MSFI applications in the late 1960’s 

(Kuusela & Poso, 1970) the rapid development of sensors and image analysis methods have 

resulted in many, although few operative, MSFI applications. Th e fi rst operative multi-

source national forest inventory began in Finland in 1990. Th e method employs fi eld plot 

data, satellite (mostly Landsat TM) images, digital map data and k-nearest neighbour (k-

NN) estimator and produces georeferenced thematic maps and detailed forest statistics for 

any given area (Tomppo, 1996). Similar MSFI methods have been tested in many diff erent 

conditions (e.g. Franco-Lopez et al., 2000; Nilsson, 2002; Tomppo et al., 1999; Tomppo et 

al., 2001). In a typical MSFI application, the fi eld data consists of sparse fi eld sample and the 

interesting forest attributes are estimated for the rest of the area with help of measured fi eld 

data and image information. In addition, the fi eld data is usually gathered using relatively 

small fi eld sample plots and training data is often built in a straightforward way: each fi eld 

sample plot is assigned spectral information from the pixel it is located on. Methods based on 

this kind of approach and use of medium resolution satellite imagery have proven to produce 

reliable forest resource information for large and medium sized areas (Tomppo, 1996; Katila 

et al., 2000). However, estimation errors have been high at the plot- and stand-levels (Tokola 

et al., 1996, Mäkelä & Pekkarinen, 2001, Katila & Tomppo, 2001). Th is is due to many reasons, 

among which are the poor spatial resolution of the image material and the diffi  culty to assure 
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Figure 12.9 – An example of generalised AISA data. NIR channel.
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Figure 12.10 – An example of the resulting segmentation. Segment level averages of NIR channel.
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exact geo-referencing in both image and fi eld data. Th ese problems can be avoided, at least to 

some extent, if the MSFI application is based on VHR data.

Th e increasing spatial resolution in image data results in increasing number of pixels per area 

unit. Th is is obvious if one considers the number of pixels falling into the area of a single 

fi eld plot. Th erefore, when comparing VHR and medium resolution data, locational errors of 

similar magnitude should result in smaller discrepancies between spectral and informational 

classes of the fi eld plots. Th e problem is that the pixel-based approach to feature extraction 

and image analysis does not apply to VHR imagery. From a forest inventory point of view 

a sub-meter resolution VHR pixel is too small a unit for image analysis. It represents 

spectral characteristics of only a small portion of the target: a stand, a plot or a tree. In order 

to be able to fully utilise the improving spatial resolution, need a way to aggregate pixels 

into appropriate spatial units for the image analysis. One way to accomplish this is image 

segmentation.

Our MSFI example demonstrates the eff ect of segment-level feature extraction and image 

analysis to the resulting MSFI estimates at plot and region level. Th e material employed in 

the example has been gathered from a study area that was originally established for MSFI 

research employing imaging spectrometer data (Mäkisara et al., 1997). Th e area has been 

imagined with Airborne Imaging Spectrometer for Applications (AISA). Th e instrument has 

been developed in Finland and it has bee employed in several studies since the development 

of the fi rst prototype AISA in early 1990’s (e.g., Mäkisara et al., 1993). Currently the AISA 

family consists of three diff erent systems: AISA+, AISA Eagle and AISA Birdie (http:

//www.specim.fi /). Th e image data were pre-processed in Finnish Forest Research Institute 

and a mosaic of the seven original fl ight lines was composed. Th e radiometric diff erences 

between adjacent fl ight lines were normalised using the overlap area and histogram matching 

technique. Th e GIFOV of the resulting mosaic was 1.6 metres. Finally, the number of 

spectral channels of the original AISA images was reduced from 30 to 4 by means of spectral 

averaging. Th e averaging was accomplished in such a way that the resulting output would 

correspond as well as possible to the spectral characteristics of new generation VHR satellite 

images. An example of the generalised image data is presented in fi gure 12.9.

Th e averaged AISA image was segmented using a two-phase approach. In the fi rst phase, a 

large number of initial segments were derived using a modifi ed implementation of the ‘Image 

segmentation with directed trees’-algorithm (Narendra & Goldberg, 1980; Pekkarinen, 2002). 

In the second phase, the minimum size of the segments was set to 10 pixels and all segment 

smaller than that were merged to their spectrally nearest adjacent segment. An example of 

the resulting segmentation is presented in fi gure 12.10.

Th e fi eld data of our example consists of systematic grid of 262 Bitterlich (relascope) fi eld 

sample plots (Mäkisara et al., 1997; Pekkarinen, 2002). Each fi eld sample plot was assigned 

spectral information from A) the pixel the plot centre was located on and B) from the 

segment the plot was located on.

Th e performance of pixel- and segment-level features was compared in the estimation of 

volume of growing stock at plot. Th e plot level estimation tests were carried out using cross-

validation (leave one out) technique. In other words, the total volume was estimated for each 
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plot with help of the rest of the plots. Th e actual estimate was derived using a weighted 

k-nearest neighbour estimator (k-NN). In weighted k-NN, the estimate is computed as a 

weighted average of k spectrally nearest neighbouring observations in the feature space (e.g. 

Tomppo, 1991, Pekkarinen, 2002). Th ree diff erent values for k were tested, namely 1, 3 and 5. 

Th e accuracy of the estimates was judged using root mean square error (RMSE, equation 

12.1) of the estimates. In addition, the within volume class distributions of the estimates and 

observed values were examined.

 (12.1)RMSE = √ –––––––––
(yi - yi)

2

n - 1

n

i=1
ˆ

Where

yi = measured value of variable y on plot i

ŷ = estimated value of variable y on plot i

n = number of plots

Th e results of our experiment show that the estimates derived using segment level features 

have signifi cantly lower RMSEs that estimated derived with pixel-level features. Th e decrease 

in relative RMSE was from about 11 to 13 depending on the number of k (fi gure 12.11). Th e 

benefi ts of the segment-level approach are also obvious at the region-level. Th e distribution 

of the resulting wall-to-wall estimated is much closer to the distribution of the fi eld data in 

the segment-level estimation approach (fi gure 12.12).

Th e example shows that the segmentation-based approach gives signifi cantly better 

estimation results than the pixel-level approach. However, there is still a lot of room for 

improvement. One fundamental prerequisite for any image analysis is that the phenomena 

under investigation and the unit of analysis are of similar scale. Th is is not the case in our 

example. Even though the segment level analysis gives better results it is not an optimal 

solution to the estimation problem: the spectral characteristics of a segment do not 
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Figure 12.11 – Relative RMS errors of total volume estimates with diff erent numbers of k. Pixel- 

and segment-level approaches.
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necessarily represent the spectral characteristics of the area from which the fi eld information 

was gathered.

In an optimal case one would know the exact location of the plot, and its dimensions and 

could use this information in construction of the training data. In such a case the extracted 

spectral information would represent the plot but the problem of determining the spatial 

units for image analysis in unsampled areas would remain the same. Image segmentation 

provides a visually appealing solution to this problem but does not necessarily give 

signifi cantly better plot-level estimation results than a straightforward spectral averaging in 

local neighbourhood (Pekkarinen, 2002).

.. Object-based forest stands mapping in an urban forest

In this second example, we demonstrate the use of segmentation as part of a two step 

multiscale segmentation/object relationship modelling MSS/ORM approach (Burnett & 

Blaschke, in press) to in a study delineating habitat patches in a mixed hardwood/deciduous 

urban forest. Just as in the above example, we utilise VHR remotely sensed imagery. And 

also in this example, ‘meaningful’ image objects are also deleniated, although using a diff erent 

segmentation algorithm. At this point the two example diverge. Instead of using a spectral 

(plus textural) feature space (i.e. the kNN) estimator, the image is further segmented so 

that we have a minimum of 2 levels (scales) of image objects. Following this multiscale 

segmentation, the ORM step then begins, wherein expert knowledge is integrated into 

the classifi cation and heuristics using both spectral as well as ‘fellowship’ (object inter-

relationships) information. Th e software eCognition by Defi niens AG of Munich was used 

for both the segmentation step and the object-relationship modelling.

Th e study site is located on the 11 km long island of Ruissalo (fi gure 12.13), west of the city of 

Turku in SW Finland. Th e forest patches in the site diff er in tree species, stem density, age 

and stand species homogeneity; ranging from sparsely treed rocky meadows with medium 

sized Scots pine (Pinus sylvestris) to mature mixed stands of lime (Tilia cordata), Scots pine, 

Norway Spruce (Picea abies) and oak (Quercus robar) exhibiting early patch-phase dynamics. 

Topographic variation is slight but because of the recent emergence of the island during the 
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Figure 12.12 – Volume class distribution of the pixel and segment based estimates and the fi eld data.
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Quaternary, organic soil layers are often very thin on upland areas. In addition to the varied 

microclimatic and soil types, long term human management (eg. introduced species), the 

island is home to one of the richest species communities in Finland (Vuorela, 2000). Th e 

island is now managed as a recreation area with a large proportion of the land area in nature 

reserves.

Th e goal of the MSS/ORM analysis was to diff erentiate between and map upland dry pine 

sites and mature mixed forests. In addition, the compositional break-down of deciduous and 

coniferous species in the mixed stands would be useful. Th e data used was 1m GIFOV digital 

still camera mosaic acquired with a professional Minolta digital camera, and rectifi ed and 

mosaiced using software developed by the Enso Forest Company and Technical Research 

Centre of Finland (VTT). We also had access to the City of Turku’s cadastre and road 

mapping data in vector format.

 Multiscale segmentation

Th e goal of the MSS step is to fi nd three levels (scales) of image objects: level -1 are the sub-

units which are mostly characterised by their spectral features; level 0 is the main mapping 

units which are classifi ed using inter-object relationships; and level +1 which is an aggregate 

or reporting level. Th e segmentation of the image was carried out so that in the forest, the 

smallest segmentation level comprised image objects such as tree crowns, small groups of 

crowns, shadow and sunlit bare rock (fi gure 12.14). It was found that for this image resolution/

image object combination, suitable segmentation levels could be generated in eCognition 

using scale parameters of 10, 50 and 100 (always with colour and shape parameters of 0.8 and 

200 m

200 m
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Figure 12.13 – Ruissalo Island study site marked with white box, centred on 60 25 42N & 

22 08 53E. Please consult the enclosed CDROM for a full colour version.
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0.2). We then took samples of the diff erent tree crowns. We had fi eld survey plots to guide us 

in this step. We also took samples from agricultural fi elds, pasture, houses and roads. Finally 

we classifi ed the level -1 objects using a nearest neighbour classifi cation routine.

Object relationship modelling

In the second step, we began to incorporate rules in order to guide the software to properly 

classify each of the level 0 objects. We use the term modelling, because we are in eff ect 

building rules that model (abstract) the functional relationship that exists in the real world 

a b

c
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Figure 12.14 – Examples of segmented image objects created in the forested area in the SW of 

the study area. Th is is an area that transitions from the mature mixed habitat to the dry upland 

pine. Th e images show the forest canopy at the three segmentation levels -1, 0 and +1 (eCognition 

segmentation scale parameters of 10, 50 & 100).
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Figure 12.15 – Sub-object relationship mapping guide (see table 12.1).
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Figure 12.16 – Original image and completed classifi cation at the Level +1 (super-object) level.



Image Segmentation Methods for Object-based Analysis and Classification – 233

between the objects, sub-objects and super-objects. Please see fi gure 12.15 and table 12.1 for a 

concise description of these rules. We started by ruling that any object under the main road 

mask that came from the City of Turku cadastre should be classed ‘road’ (rule 1). Th e rules 

that govern agricultural areas (rule 2) involved both spectral means of the level -1 objects 

and their standard deviation. Th ese objects are generally larger and smoother then those 

found in the forest areas. Houses (rule 3) were perhaps the simplest level 0 class: the spectral 

diff erences made only a mean of level -1 (sub-object) rule necessary.

Th ere were large areas of shadowed fi elds that required special consideration (rule 4). We 

didn’t want to confuse shadow in the forest. Here we had to examine level 0 objects to the 

northwest. If there were level 0 agriculture objects in this direction, we classifi ed them as 

shadowed fi eld. We could have also used a textural value such as the number of sub-objects 

or the standard deviation of the spectral values in the sub-objects, since these are smoother 

then their forest shadow cousins, but this was not needed. Pasture (rule 5) perhaps the most 

diffi  cult to model. Here, there are relatively small expanses of fi elds but with large single trees 

with elongated shadows in the centre. Th e fi eld sub-objects (level -1) had diff erent spectral 

signatures than the bare rock found in the upland pine sites, so there was no confusion there. 

In the end, a heuristic that said any groups of agriculture level 0 objects with greater than 

30 are covered by tree and shadow level -1 objects was arrived at after several iterations of 

testing. Finally, we were able to concentrate on separating the to focal forest units. We had 

fairly good separability of the coniferous and deciduous level -1 objects. We also used the 

amount of bare rock/soil level -1 objects. And we knew that the upland sites rarely touched 

agricultural areas. Using a combination of these rules, we came up with heuristics that 

modelled this ‘behaviour’.

In the fi nal step, we aggregated all neighbouring level 0 objects of the same class into single 

polygons (fi gure 12.16). Th ese were the polygons upon which the reporting statistics and 

spatial indices were calculated. Values for average amount of level -1 sub-objects (i.e. tree 

crowns) were also reported.

Th e result of the  multiscale analysis using the MSS/ORM methodology is a fl exible mapping 

of these semi-natural forests, but with the added benefi t of having a record of sub-object 

characteristics. Th us we could go further in our analysis and further classify the upland pine 

into areas with more or less bare rock. Or we may want to identify zones in the mature 

mixed forest that are within a fi xed radius of an oak crown of a certain dimension. With 

Table 12.1 – Object-relationship modelling rules

Diagram
label

Class Heuristic

1 Roads Road vector layer used as mask
2 Agriculture Classifi ed from spectral characteristics at Level 0
3 Houses Classifi ed from spectral characteristics at Level 0
4 Shadowed fi elds Level -1 segments classifi ed relative to segments to NW.
5 Pasture Agricultural level 0 segments having >30% ‘single tree + 

shadow’ sub-objects
6a Mature mixed Classifi ed by spectral, textural and sub-object rules
6b Upland dry pine Classifi ed by spectral, textural and sub-object rules
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the increasing availability of scanning LIDAR data, this ORM modelling will be even more 

powerful.

12.5 Discussion and conclusions

We began the chapter with a comparison of diff erent image processing strategies. Th e image 

analysis presented here provides methodology and examples of dealing with image semantics 

rather than pixel statistics. In most cases, information important for the understanding of an 

image is not represented in single pixels but in meaningful image objects and their mutual 

relations. Prerequisite for the successful automation of image interpretation are therefore 

procedures for image object extraction which are able to dissect images into sets of useful 

image objects. As stated above, segmentation is not new, but only a few of the existing 

approaches lead to qualitatively convincing results while being robust and operational. One 

reason is that the segmentation of an image into a given number of regions is a problem with 

a huge number of possible solutions. Th e high degrees of freedom must be reduced to a few 

which are satisfying the given requirements.

Th e multiscale consideration of landscape pattern gains much attraction recently but the 

realisation in practise becomes diffi  cult and data-intensive. Only for some small areas, fi eld 

surveys and mapping at diff erent scale is possible. Not a solution but one step forward to 

support this approach is a nested multi-scale image processing of the same data sources. Th e 

resulting diff erent object scales have to be logically connected. Th is is achieved through an 

OO approach where each object ‘knows’ its intrinsic relation to its superobject (is within) and 

its subobjects as well as the relations to the neighbouring objects at the same scale.

So far, it is concluded, that context based, object-oriented image classifi cation is a promising 

development within integrated GIS/RS image analysis. Comprehensive studies using multi-

sensor data sets which explore the ‘behaviour’ (stability and consistency of the image objects 

and their respective classifi cation results due to diff erent data situations) are still urgently 

required. However, several studies indicate that current description schemata for landscape 

objects are dependent on scale, resolution and class defi nition (Hargis et al., 1998, Herzog & 

Lausch, 2001). Very few studies already illustrated the potential of context-based approaches 

to improve classifi cation results in real-world studies, e.g. Lobo et al. (1996). Although the 

literature mentions the possibilities of object-based image analysis since two decades (Kettig 

& Landgrebe, 1976, Haralick & Shapiro, 1985), only latest-technology hardware, intelligent 

software and high resolution images can advance this concept.

While using image segmentation, a somewhat implicit hypothesis is that results from objects 

or regions based on segmentation are often easier to interpret and more meaningful than 

those of per-pixel classifi cation. Only recently, some studies compare the accuracy of both 

approaches. A main fi nding is, that the results of the latter often appear speckled even if post-

classifi cation smoothing is applied (Blaschke & Strobl, 2001, Ivits et al., 2002). Th e second 

strategy originates in conceptual ideas of landscape ecology and information structuring and 

puts forward a conceptionalisation of landscape in a hierarchical way utilising remote sensing 

and GIS data at diff erent scales resulting in an object-oriented modelling approach and the 

construction of semantic networks.
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Th is chapter took up the challenge to the technology which lies in an ontology inherent to 

modern landscape consideration: landscapes are composed of a mosaic of patches (Forman, 

1995). But patches comprising the landscape are not self-evident; patches must be defi ned 

relative to the given situation. From an ecological perspective, patches represent relatively 

discrete areas (spatial domain) or periods (temporal domain) of relatively homogeneous 

environmental conditions, where the patch boundaries are distinguished by discontinuities 

in environmental character states from their surroundings of magnitudes that are perceived 

by or relevant to the organism or ecological phenomenon under consideration. Th e technical 

potential of oo-based image processing will be applied to the delineation of landscape objects. 

Th e involves issues of up- and downscaling and the need for an ontology and methodology of 

a fl exible ‘on-demand’ delineation of landscape objects hypothesising that there are no ‘right’ 

and ‘wrong’ solutions but only ‘useful’ and ‘meaningful’ heuristic approximations of partition 

of space. Th e GIS development shall be the medium for the transfer of the indicators and 

techniques developed into operational use.

Th e object-oriented approach is also a philosophy of improved image understanding. Human 

vision is very capable of detecting objects and object classes within an image. To pursue this 

type of analysis, it is important to stay close to the ‘intuitive’ image understanding. Object-

based classifi cation starts with the crucial initial step of grouping neighbouring pixels into 

meaningful areas, especially for the end-user. Th e segmentation and object (topology) 

generation must be set according to the resolution and the scale of the expected objects. 

Th e spatial context plays a modest role in pixel based analysis. Filter operations, which are 

an important part of the pixel based spatial analysis, have the limitation of their window 

size. In object analysis, this limitation does not exist. Th e spatial context can be described 

in terms of topologic relations of neighbouring objects. But how to defi ne the image 

objects? What should be the rule of thumb for a segmentation or a pre-segmentation of 

image primitives which can build up the corresponding objects? Only very recently, several 

approaches in image analysis and pattern recognition are exploited to generate hypothesis for 

the segmentation rules as an alternative to knowledge-based segmentation (Blaschke & Hay, 

2001, Lang, 2002, Hay et al., 2003).

Th e new data available necessitate improved techniques to fully utilise the potential resulting 

from the combination of high-resolution imagery and the variety of medium-resolution 

multi-spectral imagery widely available. High-resolution panchromatic images now show 

variety within a so far ‘homogeneous’ area (a pixel in the medium-resolution image). Th e 

understanding of local heterogeneity in a panchromatic image has a strong eff ect on the 

standard deviation value in the same ‘window’ area of the image. Nevertheless, they can be 

simultaneously used to classify areas, where spectral values in multispectral bands are less 

important compared to local texture.

Th e Earth Observation data are not suffi  cient to characterise completely the natural 

environment. Th ey need so to be associated to other data. We have to further investigate 

synergy eff ects between satellite images and GIS-derived vector data, such as a digital 

topographic database. Th e use of such topographic databases, which are built up in most 

countries can support the satellite image analysis. Th is digital database off ers a geometric as 

well as a semantic prediction for objects in the satellite image.
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Current average geometric resolution of common satellite sensors allows to develop main 

area-based land use classes like ‘settlement’, ‘forest’, ‘water’ or ‘agriculture’. In combination 

with high-resolution imagery described above, expected results of this feature extraction allow 

a symbolic description of more complex image content such as ‘urban forest’ or ‘traditional, 

small-sized, complex land use’. Both, the symbolic description and the digital database, are 

transferred in a semantic network, a compact formalism for structuring the entire knowledge.

None of the various pixel-based classifi cation methods seems to really satisfy all the needs for 

the production of reliable, robust and accurate information similar to objects identifi ed by a 

human interpreter.

Important next research steps if image segmentation is used as a core methodology in an 

image analysis include:

•   To develop a methodological framework of object-based analysis which off ers an option 

to improve (semi)automatic information derivation from a rapidly increasing amount of 

data from diff erent sensors;

•   To achieve meaningful representations of spatial physical parameters derived from original 

refl ectance values

•   To develop new methods for accuracy assessment based on objects rather than pixels;

•   To develop data analysis tools for environmental management based on multi-scale object 

representation in order to support decision making.



Chapter 13

Multiscale Feature Extraction from Images 

Using Wavelets

Luis M.T. de Carvalho, Fausto W. Acerbi Jr, Jan G.P.W. Clevers, Leila M.G. Fonseca & 

Steven M. de Jong

13.1 Introduction

In the last decades, much attention has been paid to the multiresolution characteristic 

of processes and patterns in general. Good examples are remotely sensed images, which 

provide diff erent information and noise at various spatial scales. Analysts have become aware 

that image processing could be considerably improved if the scenes are viewed at multiple 

resolutions. Th is is particularly important when the information of interest is characteristic 

of just a few scale levels. In this context, the capacity of perceiving scales might be the key 

for a better understanding of our landscapes and an aid to the automatic analysis of remotely 

sensed images.

Th e meaning of scale varies so much between and within disciplines that care should be 

taken to avoid terminological confusion. Th e ratio between a segment on a map and the 

corresponding segment on the Earth’s surface is probably the oldest and the most popular 

notion of scale. Scale is also used to indicate the spatial extent of a study area. Comparing 

the two connotations above, a ‘large scale map’ provides more detailed and, consequently, 

voluminous information, which is usually limited to small geographical areas. On the 

other hand, a ‘large scale study’ covers a large geographical area and usually omits detailed 

information. Besides the two described concepts of cartographic scale (map scale) and 

geographic scale (extent or domain), other important notions of scale include the resolution 

(grain or sampling interval) and the operational scale. Th e term resolution is used to refer, 

for instance, to the size of the smallest observable object or to the pixel size, which defi nes, 

together with the geographic scale, the limitations to represent a given scene. Finally, the 

operational scale refers to the interval at which a phenomenon operates (Lam & Quattrochi, 

1992). In this chapter, the meaning of scale will always be clear from the context and used 

mostly in the sense of resolution or geographic scale, where small scales present detailed 

information and large scales represent coarser views of the scenes or signals.

Th ese important aspects of scale are useful and obvious when we make observations as a 

function of space (i.e., position), but the same principles apply to the temporal, spectral or 

other dimensions of the world and are fundamental to their proper characterisation. Even 

so, the vast majority of techniques for geographical information processing have been driven 

by the ‘fi xed scale paradigm’. Regarding remote sensing and GIS, resolution-invariant 
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methods have proliferated mainly because of simpler data structures and analysis (Csillag 

& Kabos, 1997). In this framework, the information contained in the multiple scales of the 

data cannot be analysed or used separately yielding results that also combine the infl uence 

of variables that might be characteristic of just a few scale levels. Environmental processes 

operate at multiple scales generating patterns that have a multiscale nature as well. Like the 

real world they portray, remotely sensed data ‘show’ diff erent or complementary information 

at diff erent scale levels. Th is fact has important implications for analyses, representations and 

interpretations of data and accuracy.

Th e almost infi nite resolutions of our world in all of its dimensions have raised an increasing 

interest in scale issues, which are now recognised as fundamental to any research area. 

Nevertheless, only a few recent tools exist, which are appropriate to derive and study the 

information contained in multiple scales of the data.

13.2 Multiresolution decomposition with wavelets

Most of the data used in scientifi c research are generated by measuring devices that 

record a physical quantity of interest. In application fi elds ranging from chemometrics to 

astronomy, the device is a remote sensor and the physical quantity is the refl ected or emitted 

electromagnetic energy, which is recorded in digital or analogue format usually as a function 

of space f(x, y), e.g. an image. Lets pick, as an example, one line of the digital image shown in 

fi gure 13.1 and plot it as a function of just one variable f(t) to simplify presentation.

One common way to extract information from this function is to compare it with a set of 

test functions. Basically, a high coeffi  cient results from this comparison where the function 

under evaluation is more similar to the test functions. Well-known sets of test functions are 

the dilations by a factor  of a single periodic function eit in  Fourier transformations (Fourier, 

1988).

Th e Fourier transform accurately refl ects in a  which frequencies occur in the input signal:

a  = <f (t), ei t>  (13.1a)

where, i is the imaginary unit (i2=-1) and < , > stands for the inner (or scalar) product in the 

space L2 of square integrable functions. If h(t) and g(t) are two functions in L2, their inner 

product in the interval [a,b] is a measure of similarity between the two functions, which is 

defi ned by:

<h (t), g (t)> = ∫  h (t) ∙ g (t) dta

b –––
 (13.2)

where ‘—’ stands for complex conjugate, such that the conjugate of a + ib is a – ib, with 

i being the imaginary part of the complex number ib. For example, using the complex 

conjugate of ei t, the inner product of Equation 13.1 becomes:

<f (t), ei t> = ∫     f (t) ∙ ei t dt
+∞

-∞  (13.1b)
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Besides the frequency localisation property mentioned above, practical applications require 

good time (or space) localisation as well. Th is requirement was partially achieved by the 

windowed Fourier transform (Gabor, 1946), which uses pieces of periodic functions instead 

of infi nite waves as test functions. However, sudden breaks between pieces might generate 

artefacts, especially in 2D signals. Moreover, a choice has to be made concerning the 

size of the analysing pieces, generating a compromise towards local or, otherwise, global 

characterisation. Th e new set of test functions jk(t) in the  wavelet transform goes a step 

further and tells us when (or where) each frequency component occurs more eff ectively than 

the windowed Fourier transform. One of its aims is to provide an easily interpretable visual 

representation of signals. While Fourier coeffi  cients in Equation 13.1 have an index  related 

to the frequency, the wavelet coeffi  cients are characterised by a parameter j, referring to a 

scale of octaves (doubling the frequency when j=1), and a positional parameter k:

ajk = <f (t), jk (t)>  (13.3)

Th is comparison might operate in continuous time (on functions) or in discrete time 

(on vectors). Th e raster data structure of remotely sensed images is strictly discrete and 

consequently, the wavelet transforms presented here will also be discrete. Fortunately, 

multiresolution analysis and wavelet transforms have a strong connection with the discrete 

fi lters of signal processing, which will serve as the basis for the following presentation.

Th e remainder of this section provides a textual overview of wavelet transforms and 

multiresolution analysis with emphasis on aspects used in further sections. For a complete 

mathematical characterisation of wavelets, a few recent references will be recommended here. 

Strang & Nguyen (1997) bring a comprehensive introduction to the theory of wavelets and 

fi lter banks, whereas Prasad & Iyengar (1997) provide a basic mathematical background and 

some practical applications to image processing. Daubechies (1992) and Mallat (1998) present 

in-depth developments, whereas Starck et al., (1998) present application-oriented material 

with numerous examples in various fi elds, including geoinformation sciences.
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Figure 13.1 – Plot of refl ectance values referent to the white line of the image on top.
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Figure 13.2 – (a) Line-profi le of Figure 13.1 with (b) respective low frequency (top) and high 

frequency (bottom) components.
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Figure 13.3 – Schematic representation of a fi lter bank.
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Figure 13.4 – Schematic representation of three possible structures for recursive implementation of 

fi lter banks.
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.. Digital fi lters and fi lter banks

In signal processing, a digital fi lter is a time-invariant operator, which acts on an input vector 

(i.e., digital signal), producing a transformed vector by means of mathematical convolution. 

Let the operator be h=[½  , ½  ] acting on an input vector x, with N elements. Th en, the nth 

element of the transformed output vector y is computed from two consecutive elements of x:

y (n) =  h (l) x (n-l)
l

 (13.4)

where, h(l) is the lth element in the operator.

Th is is the so-called moving average, because the output averages the current element x(n) 

with the previous one as the operator moves forward over x. Th e moving average smoothes 

out the bumps in the signal. It is also called lowpass fi lter because it reduces the high 

frequency components (i.e., the bumps) keeping only the low frequency components of 

the signal. Now, let the operator be g=[½  , -½  ] acting on the same input vector x to produce 

another output vector. Th is operator computes ‘moving diff erences’. It picks out the bumps 

or high frequencies in the signal and thus, is called  highpass fi lter. Figure 13.2 illustrates the 

convolution of the example signal with a lowpass and a highpass fi lter.

Th ese kinds of fi ltering operations are well known in geoinformation sciences and for long 

have been used to smooth images and enhance objects’ edges (Burrough & McDonnell, 1998), 

but they can do a lot more. Th e lowpass and highpass fi lters alone lack the desirable property 

of invertibility because one cannot recover x from y. Together, they separate the input x into 

complementary frequency bands that can be combined to recover the original signal. Th is 

combination is termed fi lter bank or  quadrature mirror fi lters (QMF) (Esteban & Galand, 

1977), which only recently have gained attention from the geoinformation community 

and turned out to be extremely useful. Th e advantages are that the subband signals can be 

effi  ciently fi ltered, compressed, enhanced, transmitted, and then reassembled if so desired. 

Figure 13.3 illustrates a complete two-channel fi lter bank with analysis (decomposition), sub-

band manipulation (e.g., fi ltering), and synthesis (reconstruction).

Perfect reconstruction (i.e., output=input) is achieved if no manipulation is carried out and 

if the synthesis bank (hs and gs) is the inverse of the analysis bank (ha and ga). In this sense, 

the fi lter banks might be orthogonal, biorthogonal (h orthogonal to g, h and g independently 

orthogonal), semiorthogonal (h and g independently orthogonal, but spaces associated with h 

and g are not individually orthogonal) or even nonorthogonal (Starck et al., 1998).

Th e novelty about wavelets and the key concept of ‘scale’ come from a procedure of recursive 

implementation of the fi lter bank: signals are represented with variable resolutions when we 

apply the same transform (lowpass and highpass fi ltering) on the outputs of the analysis 

bank. If this process iterates, we move to coarser scales as far as desired, depending on the 

length of the input signal and on the objectives of the analysis. Usually, we consider only 

the outputs of the lowpass fi lter for iteration, but other possibilities exist: the complete tree 

(lowpass and highpass are iterated) and the wavelet packets (lowpass and/or highpass are 

iterated) as shown in fi gure 13.4.
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.. Wavelets and multiresolution

In continuous-time, there exist a scaling function (t), also known as the father wavelet, 

corresponding to the lowpass fi lter and a wavelet function w(t), also known as the mother 

wavelet, corresponding to the highpass fi lter. Th ey both involve the sets of fi lter coeffi  cients 

h(l) and g(l) from discrete time. Th e scaling function is produced by the so-called dilation 

equation, whereas the wavelet function is produced by the wavelet equation:

 (t) = 2  h (l)  (2t-l)
l

 (13.5)

and

w (t) = 2  g (l)  (2t-l)
l

 (13.6)

Considering the fi lter coeffi  cients of our example (½  , ½   and ½  , -½  ), we have the dilation 

equation and the wavelet equation from h and g:

(t) =  (2t) +  (2t - 1)  and w (t) =  (2t) -  (2t - 1) .

In this case the dilation equation produces the box function and the wavelet equation 

produces the  Haar function (fi gure 13.5).
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Figure 13.5 – Th e box function (top) and the Haar wavelets (bottom).
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Wavelet stands for ‘small wave’ (a pulse). In the case of the Haar wavelet (fi gure 13.5) it is 

a ‘square’ wave. It is one of the simplest wavelets and a standard example, which is used to 

demonstrate the principles in most textbooks because the idea is fundamental to all others. 

Alfred Haar introduced it (Haar, 1910) almost 70 years before the concept of ‘ondelette’ 

(wavelet) was born in France. Again, the novelty concerns the recursive implementation 

and not the functions; wavelets might be piecewise constant functions, continuous piecewise 

linear functions, splines etc.

Th e simultaneous appearance of t and 2t in the dilation and wavelet equations characterises 

its multiscale nature. Meyer (1989) introduces multiresolution using a metaphor: ‘From a 

subtle and complicated image, one may extract... a schematic version... being a sketchy approximation 

resembling the pictures one can fi nd in cartoons.’ Th en, a set of better and better sketchy 

approximations of the original image resembles a multiresolution representation.

Th e goal in multiresolution analysis is the decomposition of the whole space of functions into 

subspaces Vj. Functions are projected at each step of the analysis onto fi ner subspaces such 

that each Vj is contained in the previous subspace Vj-1:

...  V4  V3  V2  V1  V0  ...

Th e function f(t) in the whole space has a projection in each subspace. Th ese projections 

represent the information contained in f(t) in an increasing fashion, such that fj(t) (i.e., the 

projection of f(t) in Vj) approaches f(t) for decreasing j. Besides the hierarchic and complete 

scale of (sub-)spaces other requirements are crucial to the notion of multiresolution. 

Th e dilation requirement states that if a function (t) is in Vj, then (2t) is in Vj-1. Th e 

translation requirement states that if (t) is in V0, then so are all its translates (t-k). Th e 

fi nal requirement states that the function (t) with translates (t-1) must form a stable basis 

for V0, i.e. a Riesz basis: a complete set of linearly independent testing functions, say i(t), 

that represents in a unique way every function in V0 as ai i(t), with |ai|
2 being fi nite. Th en, 

considering dilations by j and translations by k, the basis is generated by jk(t) = 2j/2 (2jt-k) 

and we have:

fj (t) =  ajk jk (t)
k

 (13.7)

representing the projection of f(t) in Vj.

Th e associated error space when moving from Vj to Vj+1 is the wavelet space Wj+1. Th e wavelet 

space, which is also generated by dilations and translations of a single function, contains the 

‘diff erence in information’ fj+1(t)=fj(t)-fj+1(t) (i.e., the ‘detail’ at level j+1). Each function in Vj is 

then the sum of two parts, fj+1(t) in Vj+1 and fj+1(t) in Wj+1. Considering the subspaces they lie 

in, we have:

Vj+1 + Wj+1 = Vj  (13.8)

Th en,



244 – L.M.T. de Carvalho, F.W. Acerbi Jr, J.G.P.W. Clevers, L.M.G. Fonseca & S.M. de Jong

V2 + W2 = V1 and V1 + W1 = V0

hence,

V2 + W2 + W1 = V0

If wjk(t) = 2j/2w(2jt-k) is a stable basis for Wj and calling the set of associated coeffi  cients by djk 

we have the complete information of f(t):

f (t) =  aJk Jk (t) +   djkwjk (t)
k kj=1

J

 (13.9)

Th en, the coeffi  cients ajk, representing the projection fj(t) on Vj are obtained with the inner 

product 〈f(t), jk(t)〉, whereas the coeffi  cients djk, representing the projections fj(t) on Wj are 

obtained with the inner product 〈f(t), wjk(t)〉.

Concluding, wavelets come from the iteration of a fi lter bank (Daubechies, 1989) and because 

of the repeated rescaling, they decompose a signal into details at diff erent resolutions. If the 

signals under consideration are remotely sensed images, the scale parameter corresponds 

to the size of objects on the Earth surface, which are eff ectively modelled with this new 

multiresolution representation revealing patterns that are not so clear in ‘subtle and 

complicated’ remotely sensed images.

.. Algorithms for implementation

Part of the success of the wavelet transform is due to the existence of fast algorithms. Th ey 

rarely compute inner products with wavelet templates directly. Rather, implementation is 

normally achieved via simple discrete convolutions, where the fi lters and fi lter banks play 

a major role. Two basic and very popular algorithms will be presented here. Variations of 

these two as well as other algorithms exist. Some of them will be only cited here and the 

interested reader should refer to the following references. Th e previously mentioned ‘Wavelet 

Packet’ is described in Coifman et al. (1992). Starck et al. (1999) proposed a fusion of the 

wavelet transform (WT) and the  pyramidal median transform (PMT), called ‘PMWT’, 

which combines the advantages of both methods in one algorithm. Th e ‘Laplacian Pyramid’ 

by Burt & Adelson (1983) was one of the fi rst schemes for multiresolution decomposition and 

afterwards related to the wavelet transform. Bijaoui et al. (1992) proposed a scheme similar 

to the Laplacian pyramid called ‘Half Pyramidal Wavelet Transform’ in order to reduce some 

drawbacks of the former. Finally, the so-called ‘Lifting Scheme’ (Sweldens, 1996) is probably 

the most famous and innovative algorithm proposed recently for implementation of the 

wavelet transform. Because of simplifi ed notation, the following algorithms will be described 

considering that our input signal is a function of one variable f(t). Extensions to f(T), with 

T=(t1, ... tn), are straightforward.

Th e ‘algorithme à trous’ (Holschneider et al., 1989)

Let f(t)=a0, and l be symmetric around zero, i.e. l=(..., -1, 0, 1, ...).

Th en, the projections onto Vj are:

aj,k =  h (l) aj-1, k+2
j-l, for all j > o, k

l
 (13.10)
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whereas, the projections onto Wj are:

dj,k = aj-1, k - aj-1, for all j > o, k  (13.11)

Th e reconstruction formula is:

a0,k = aJ,k +  dj,k, for all k
j=1

J

 (13.12)

Th e ‘algorithm à trous’ is stepwise illustrated in fi gure 13.6.

As an example, let the operator be h(-1)=¼  , h(0)=½  , h(1)=¼  , then the 0th element of a1 is:

a1,0 = ¼   a0,-1 + ½   a0,0 + ¼   a0,1.

Th en, for the next resolution level, the 0th element of a2 is:

a2,0 = ¼   a0,-2 + ½   a1,0 + ¼   a1,2.

Th e 0th elements of d1 and d2 are:

d1,0 = a0,0 - a1,0 and d2,0 = a1,0 - a2,0.

With reconstruction:

a0,0 = a2,0 + d2,0 + d1,0.

Remarks:

•   Th e operator forgets all signal samples but every k+2j-1l. Th is is achieved by inserting zeros 

between samples of the operator when moving from j to j+1. Th at is the reason why the 

algorithm bears its name, ‘à trous’ means ‘with holes’.
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Figure 13.6 – Schematic representation of the ‘à trous’ algorithm with decomposition and 

reconstruction paths.
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Figure 13.7 – Example of a 2D decomposition using the ‘à trous’ algorithm.
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•   2D signals (e.g., fi gure 13.7) require 2D operators:

          

(¼   ½   ¼  ) =          =
¼  
½  
¼  

⁄ ⅛   ⁄
⅛   ¼   ⅛  
⁄ ⅛   ⁄

•   Values at the boundaries of the signal are normally obtained by refl ection, periodicity or 

continuity.

•   Operators must have an odd number of elements.

Stéphane Mallat’s algorithm (Mallat, 1989)

Th e projections onto Vj are given by:

aj,k =  h (l - 2k) aj-1,l, for all  j > o, k.
l

 (13.13)

whereas, the projections onto Wj are given by:

dj,k =  [g (l - k) dj-1,l, for all  j > o, k.
l

 (13.14)

Th e reconstruction formula is:

aj,k =  [h (k - 2l) dj+1,l + g(k - 2l)] dj-1,l, for all  j, k.
l

 (13.15)

Figure 13.8 provides a fl ow diagram showing stepwise the Mallat’s algorithm with 

decomposition and reconstruction steps.

As an example, let the operators be h = (½  , ½  ) and g = (½  , -½  ), then the 0th element of a1 and 

d1 are:

a1,0 = ½   a0,0 + ½   a0,1 and d1,0 = ½   a0,0 - ½   a0,1.

Th en, after undersampling a1 and d1, the 0th element of a2 and d2 are:

a2,0 = ½   a1,0 + ½   a1,1 and d2,0 = ½   a1,0 - ½   a1,1.

With reconstruction (after upsampling):

a0,0 = ½   a1,0 + ½   d1,0.

Remarks:

•   Mallat’s algorithm requires the length of the input signal to be power of 2.

•   Extension to 2D signals is implemented by applying the same 1D scheme fi rst to the rows 

and then to the columns of the 2D signal. In this way, Mallat’s algorithm might generate 

three sets of detail coeffi  cients at each scale j, depicting high frequencies according to their 

orientation in the raster, i.e. vertical, diagonal and horizontal (fi gure 13.9).

•   Values at the boundaries are also obtained by refl ection, periodicity or continuity.

.. Other multiresolution decompositions

Starck et al. (1998) developed a robust multiresolution decomposition based on the median 

transform. Th e median transform is non-linear, and off ers advantages for dealing with outliers 
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in the data. Basically, the result from a convolution with a median fi lter is subtracted from 

the original signal and followed by iteration, which leads to multiresolution representations. 

Similarly, multiresolution decomposition based on mathematical morphology (Serra, 1984) 

can be realised by taking the diff erence between the original image and its opening. In both 
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Figure 13.8 – Schematic representation of Mallat’s algorithm with decomposition and reconstruction 

stages.
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alternative transforms, undersampling can be introduced (Starck et al., 1998), which leads to 

pyramidal structures like in Mallat’s algorithm.

13.3 Recent applications in Remote Sensing image processing

Th e interest in wavelet transforms has grown rapidly in the remote sensing community. Other 

areas of application in image processing are being explored. Th e principles discussed so far 

also apply to the temporal and spectral domains of remotely sensed data to aid tasks such as 

hyperspectral data analysis, time series processing, image segmentation, image compression, 

detection of linear features etc. Next, we refer to recent studies tackling some of these issues.

Wavelets have been used to model remotely sensed spectra for noise reduction as well as 

for detection and extraction of characteristic features from the spectral signatures. Bruce & 

Li (2001a) and Shimidt & Skidmore (2003) showed how wavelet transforms can be used to 

smooth spectra before further analysis. Th eir approach provides an eff ective way of selecting 

d1 vertical d2 vertical d3 vertical d4 vertical

d1 diagonal

d1 horizontal

d2 diagonal

d2 horizontal

d3 diagonal

d3 horizontal
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d4 horizontal

a0 a4
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Figure 13.9 – Example of a 2D decomposition using Mallat’s directional analysis.
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appropriate width for the smoothing fi lters. Bruce & Li (2001) have also pointed out the 

signifi cant gain in computation time achieved by the method. In another study (Koger et 

al., 2003), the authors demonstrated that features extracted from wavelet transforms were 

superior to the original spectral bands and to features extracted with principle component 

analysis for discriminating between weed-free soybean crops and soybean intermixed with 

pitted morningglory. Automated detection of hyperspectral targets was also tackled by Bruce 

et al. (2001) and Bruce et al. (2002a). Th e approach turned out to be a powerful tool for the 

detection of constituent’s absorption bands within hyperspectral signatures. Kaewpijit et al. 

(2003) and Bruce et al. (2002b) applied wavelet transforms for dimensionality reduction of 

hyperspectral data. Th e former study compared the wavelet-based approach to the standard 

principle component analysis and showed that wavelets provided better or comparable results, 

but with superior computational effi  ciency.

Extraction of linear features like objects edges from remotely sensed images can be performed 

with wavelet transforms. In fact, edge detection was one of the fi rst applications of wavelet 

transforms in image processing (Mallat & Zhong, 1992). Th e fi rst scales of decomposition 

and the respective modulus maxima curves provide an effi  cient framework for the detection 

of linear features such as agricultural fi eld boundaries, streets and roads ( Ji, 1996; Dong et 

al., 1997; Couloigner & Ranchin, 2000). Due to the wavelet transform sparse representation 

(i.e., most coeffi  cients are zero), another obvious application is data compression. Lossless as 

well as lossy compression can be considered. Work on remote sensing image compression has 

been carried out by Marçal et al. (2000), Dragotti et al. (2000), Kiema (2000), and Kiema & 

Bähr (2001).

Noise modelling techniques based on multiresolution wavelet transforms have been used 

mostly for radar image processing. Speckle suppression, feature detection, feature extraction, 

and texture classifi cation are some of the studied applications (Yamaguchi et al., 1995; Aiazzi 

et al., 1998; Simard et al., 1998; Horgan, 1998; Fukuda & Hirosawa, 1999; Liu et al., 2000; 

Belhadj & Jebara, 2002; Nyoungui et al., 2002; Wu & Liu, 2003).

Digital elevation model (DEM) processing is another potential area of application for 

wavelet transforms. Dactu et al. (1997) compared the performance of roughness estimators 

and concluded that the wavelet-base estimator outperformed estimators based on the 

computation of the power spectrum of an image. McArthur et al. (2000) used wavelet 

transforms to produce a series of approximations of a DEM to constitute a hierarchical 

terrain database and generate triangulation models that retain the dominant terrain features 

at each scale level. InSAR DEM reconstruction was considered in the study of Ferretti et al. 

(1999), where as DEM simplifi cation was studied by Zhu et al. (2002).

Finally, wavelets can be used to model temporal profi les as suggested by Carvalho (2001). 

Th e wavelet-based approach was considered to be promising as a preprocessing step for 

eff ective time series analysis. It can be used to remove outliers like clouds, shadows and 

misregistrations (Carvalho, 2003), as well as to reduce radiometric discrepancies among 

images in the series, resulting in biophysically sound temporal profi les. In the reminder 

of this chapter, we describe three case studies on the application of wavelet transforms in 

remote sensing that were not mentioned above, but represent promising approaches. Section 

4 presents how wavelet-based feature extraction can aid the automation of image registration, 
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which is normally an important and time consuming pre-processing step. Next, we show in 

section 5 that the inherent multiresolution nature of wavelet transforms improves the fusion 

of images with diff erent pixel sizes. Finally, section 6 presents the extraction of features from 

diff erence images to facilitate change detection over large geographic areas.

13.4 Case study I – feature extraction for image registration

.. Introduction

Agencies from all over the world have launched or are preparing for launching many earth 

observation systems of high resolution, multi-bands and multi-sensors including SPOT-5, 

Landsat-7, ENVISAT-1, TRMM (Tropical Rainfall Measuring Mission), EOS-AM (Earth 

Observing System) and CBERS (China-Brazil Earth Resources Satellite). Th e analysis 

of multi-temporal/multi-sensor remote sensing datasets acquired by these systems can be 

effi  ciently done if the data refer to the same geometry. Th e processing of images such that 

their corresponding pixels have the same geometry comprises image registration or geocoding 

processes. Geometrical correction and registration of high spatial resolution images must 

be done with more precision, whereas the increased data volume being collected demands 

automatic or quasi-automatic registration systems. Th e development of such accurate 

quasi-automatic systems is an important and wide fi eld of research because the existing and 

upcoming data sets can vary a lot in content, radiometry and geometry.

Let us call the image to be registered the warp image and the image to which the warp image 

will be macthed the reference image. Th e general approach to image registration consists of 

the following four steps:

1   Feature identifi cation: identifi es a set of relevant features in the two images, such as edges, 

intersections of lines, region contours, regions, etc.

2  Feature matching: establishes correspondence between the identifi ed features. Each feature 

in the warp image must be matched to its corresponding feature in the reference image. 

Each feature is identifi ed with a pixel location in the image, and these corresponding 

points are usually referred to as control points.

3   Spatial transformation: determines the mapping functions that can match the rest of the 

points in the image using information about the control points obtained in the previous 

step.

4  Interpolation: resamples the sensed image using the mapping functions to bring it into 

alignment with the reference image.

In general, the registration methods are diff erent from each other in the sense that they 

can combine diff erent techniques for feature identifi cation, feature matching and mapping 

functions. Th e most diffi  cult step in image registration is obtaining the correspondence 

between the two sets of features. Th is task is crucial to the accuracy of image registration 

and much eff ort has been spent in the development of effi  cient feature matching techniques. 

Given the matches, the task of computing the mapping functions does not involve much 

diffi  culty and the interpolation process is quite standard.

Generally, there are two methods that can be used to register images: area based and feature 

based matching. Area based methods can be applied to spectrally similar images whilst 
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feature based matching can be used to register any pair of images. Although feature based 

methods are more adequate for registering multi-sensor images they fail in case of registering 

multi-temporal images that present reasonable changes over the time. In these cases there 

are not enough corresponding features in both images. Th e area-based method is very robust 

in many situations. However, if the orientation diff erence between the images is large the 

correspondences between feature points cannot be correctly found. De Castro & Morandi 

(1987), Zheng & Chellapa (1993) and Hsieh et al., (1997) have proposed methods to overcome 

this problem.

Taking into account the large amount of data, two requirements are important in the image 

registration methods: speed of such methods and their ability to handle multi-sensor/multi-

temporal images. Th e multi-resolution approach presents some characteristics that facilitate 

these tasks. Taking advantage of the multi-resolution strategy various image registration 

techniques have been proposed in the literature (Bajscy & Kovacic, 1989; Zheng & Chellapa, 

1993; Djamdji et al., 1993; Le Moigne, 1994; Corvi & Nicchiotti, 1995; Li & Zhou, 1996; 

Hsieh et al., 1997; Fonseca & Costa, 1997; Deubler & Olivo, 1997; Le Moigne, 2002). In 

order to illustrate how the multiresolution analysis can be applied to the problem of image 

registration, the next session presents a registration method based on multiresolution 

decomposition proposed by Fonseca (Fonseca, 1999; Fonseca & Costa, 1997; Fonseca et al., 

1998).

.. Image registration based on multiresolution decomposition

Th e registration method presented here uses the wavelet transform to extract feature points 

in the images and to estimate the parameters of the transformation in an iterative way over 

the diff erent scale levels in the transform domain. Th e algorithm is performed at progressively 

higher resolution, which allows for faster implementation and higher registration precision. 

Th e steps of the registration method are illustrated in fi gure 13.10.

Initially, the images can be processed to reduce noise, resample, generate new bands, enhance 

histogram etc. Subsequently, the discrete multiresolution wavelet transforms (in J scale levels) 

of the two images are computed. Th e next phase aims to identify features that are present 

in both images in each level of the decomposition. For this process one uses the modulus 

maxima of the wavelet transform to detect sharp variation points, which tend to correspond 

to edge points in the images.

Four steps are involved in the feature point selection process carried out at each level of 

decomposition:

1   Edge points extraction using the modulus maxima of the wavelet transform;

2  Selection of strong edge points;

3   Selection of edge points localized in high contrast regions;

4  Suppression of non-maxima local edge points.

Th e feature point extraction algorithm is applied to a Landsat-TM image taken from an 

urban area of Brasilia (Brazil). Figure 13.11 shows the feature points (denoted with ‘+’ marks) 

superimposed on the bands of the decomposition for two scale levels. Given the feature 

points, the next step is to fi nd their correspondences between the images. A correlation-
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based criterion is used in the matching process. Th e use of the correlation coeffi  cient as a 

similarity measure is motivated by results that show its good performance compared with 

others measures (Barnea & Silverman, 1972; Brunelli & Messelodi, 1995; Khosravi & Schafer, 

1996). Th e initial matching is performed on the lowest resolution images and is determined 

by the best pairwise fi tting between the feature points in the two images. At this point, some 

false matches inevitably occur. Th is fi rst part of the matching process is a crucial phase of 

the registration process. If the initial registration parameters are invalid the search for a 

registration transformation goes off  in a wrong direction, and the correct trend may not be 
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Figure 13.10 – Block diagram of registration algorithm.
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recovered in later steps. Th erefore, a consistency-checking procedure is performed in order to 

eliminate incorrect matches and improve initial transformation precision.

Th e above procedure provides a set of reliable matches, which are used to determine a 

warping function that gives the best registration (with respect to minimum root mean 

square registration error) to the precision available at level J of the wavelet transform. A 2D 

affi  ne transformation is used to model the deformation between the images. In most remote 

sensing applications the images are preprocessed for geometrical correction that justifi es the 

use of this class of transformation.

Th e point matching and image warping steps can be performed at progressively higher 

resolutions in a similar fashion. Finally, we obtain the registration transformation that should 

be used to correct the warp image. Basically, the algorithm needs one parameter that controls 

the number of control points.

.. Results and discussion

In order to demonstrate its feasibility the algorithm was used to register images acquired 

by diff erent types of systems such as SPOT, Landsat, and JERS-1. Table 13.1 provides 

a b

c
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Figure 13.11 – Feature points superimposed on the bands of the decomposition for two scale levels 

( J=2): (a) scale 22; (b) scale 21 and (c) scale 20.
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information about the images used in the various experiments. Wavelet decompositions were 

carried out up to the second scale level, except for experiments T9, T10 and T11, where the 

images were decomposed up to six scale levels. Th e images presented good internal geometry 

and were warped using bilinear interpolation. Experiments T1, T2 and T3 used three pairs of 

Landsat-TM images of the Amazon region, cropped from the scenes used in the Amazon 

deforestation assessment (Batista et al., 1994). Usually, image registration in this case is a 

diffi  culty task due to the characteristic texture information of forested areas, as well as to 

the land use diff erences caused by deforestation activities in the region. Figure 13.12 shows 

the registration of Landsat TM images acquired in diff erent dates over the Amazon region 

(experiment T1). TM945F was taken as the reference image and TM925F as the warp one. 

Figures 13.12(c) and (d) show the initial control points (denoted with ‘+’ marks) superimposed 

on images in the lowest level of decomposition.

Images of agricultural regions were also tested (experiments T4, T5 and T6). Although 

these regions contain well-defi ned objects (fi elds), marked seasonal changes make diffi  cult 

the localization of control points. Figure 13.13 shows the registration of Landsat TM images 

acquired in diff erent dates (experiment T5). Th ey correspond to an agricultural region near 

a b

c d
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Figure 13.12 – Registering Amazon region: (a) reference image (TM945AM); (b) registered image 

(TM925AM); (c) and (d) show the initial control points superimposed on reference and warp 

images in the lowest level of resolution.
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Itapeva, São Paulo, Brazil. TM945RA was taken as the reference image and TM905A as the 

warp one. Figures 13.13(c) and (d) show the initial control points superimposed on images in 

the lowest level of the decomposition.

Images of urban areas taken from SPOT (band 3) and TM (band 4) sensors, in diff erent 

dates, were used in experiments T7 and T8. Figure 13.14 shows the registration of two images 

from an urban area in São Paulo, Brazil (experiment T7). Th e SPOT image (SP953SP) 

was reduced to a 30 m pixel size and taken as the warp image. TM944SP was taken as the 

reference image. Figures 13.14(c) and (d) show the initial control points superimposed on 

images in the lowest level of the decomposition.

Th e algorithm was also tested on JERS-1 images taken in diff erent dates. JERS93 was taken 

as the reference image and JERS95 as the warp one (experiment T10). Before registration, 

these sub-images were fi ltered (gamma fi lter with 10 iterations) to reduce speckle noise 

(Oliver & Quegan, 1998). Figures 13.15 (a) and (b) show the reference and registered images. 

Figures 13.15 (c) and (d) show the initial control points superimposed on images in the lowest 

level of the decomposition.

Control points were manually acquired to measure registration accuracy. In some cases, such 

in radar images, this task was very diffi  cult because there were just a few good features. Table 

13.2 shows the number of control points ( CPs), registration error (RMSE) and computation 

time (in seconds) obtained for each pair of test images. Th e images were processed in a Sun-

Ultra 30, 300 MHz. One can observe that the registration error is less than one pixel for all 

Table 13.1 – Information of the images used in the experimental results.

Experiment Images Region Satellite Band Size (pixels) Date Application

T1 TM925F
TM945F

Amazon Landsat-TM5 5 512 by 512 06/07/92
07/15/94

forest

T2 TM975F
TM955F

Amazon Landsat-TM5 5 512 by 512 07/07/97
08/03/95

forest

T3 TM965F
TM945F

Amazon Landsat-TM5 5 512 by 512 07/20/96
07/15/94

forest

T4 TM905A
TM945A

Itapeva Landsat-TM5 5 512 by 512 09/09/90 
07/18/94

agriculture

T5 TM905A
TM945RA

Itapeva Landsat-TM5 5 512 by 512 09/09/90
07/18/94

agriculture
(georef.)

T6 TM945AG
TM925AG

Agudos Landsat-TM5 5 512 by 512 07/09/94
09/21/92

agriculture

T7 SP953SP
TM944SP

São Paulo SPOT
Landsat-TM5

3
4

512 by 512 08/08/95
06/07/94

urban

T8 SP953DF
TM944DF

Brasília SPOT
Landsat-TM5

3
4

512 by 512 08/08/95
06/07/94

urban

T9 JERS93
JERS96

Amazon JERS-1 X 4000 by 5920 06/26/93
08/08/96

forest

T10 JERS93
JERS95

Amazon JERS-1 X 4000 by 5920 06/26/93
10/10/95

forest

T11 JERS95B 
JERS96B

Amazon JERS-1 X 4000 by 5920 10/10/95
08/13/96

forest
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a b
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Figure 13.13 – Registering agriculture images: (a) reference image (TM945RI); (b) registered image 

(TM905I); (c) and (d) show the initial control points superimposed on reference and warp images 

in the lowest level of resolution.

Table 13.2 – Number of control points ( CPs), registration error (RMSE) and computation time 

obtained for each pair of test images.

Test #CPs RMSE (Pixel) Time (s)

T1  169 0.787  29
T2  485 0.655  31
T3  326 0.828  29
T4  184 0.989  27
T5  287 0.828  42
T6  294 0.344  28
T7  267 0.434  29
T8  110 0.915  29
T9  153 1.101  30
T10  79 0.669  26
T11  587 0.866  10800
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cases except for experiment T9. Broadly speaking, the processing has taken less than 1 minute 

for a 512 by 512 pixel image. Th e algorithm is reasonably effi  cient in terms of computational 

complexity. However, the processing time depends on the images to be registered. Besides, 

the algorithm has obtained a large number of control pixels that allows registering images 

with good precision.

.. Conclusions

Th e multiresolution approach has been successfully applied to two steps of the image 

registration process: features extraction and matching strategy that involves the 

transformation parameters calculation. Th e registration algorithm presented here is very 

simple and easy to apply since it needs basically one parameter. A signifi cant amount of 

computation is saved in comparison to traditional pixel-by-pixel searching methods because 

the matching is carried out only on the selected feature points and in a coarse-to-fi ne manner. 

Due to the fact that the registration procedure uses the grey level information content of the 

images in the matching process, it is more adequate to register images of the same sensor or 

with similar spectral bands. Nevertheless, it has demonstrated technical feasibility for many 

images of forest, urban and agricultural areas from Landsat-TM and SPOT sensors taken in 
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Figure 13.14 – Urban region: (a) reference image (TM944SP); (b) warp image (SP953SP) 

registered; (c) and (d) show the initial control points superimposed on reference and warp images in 

the lowest level of resolution.
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diff erent times. Th e registration technique described here has been implemented in a system 

for automatic registration and mosaic of remote sensing images under development at the 

Division of Image Processing (National Institute for Space Research, Brazil) and the Vision 

Lab (Electrical & Engineering Computer Department, UCSB). Information about this 

system is found in Fedorov et al. (2002) and on the internet (http://www.regima.dpi.inpe.br).

13.5 Case study II – feature extraction for data fusion

.. Introduction

With the development of remote sensing technology an increasing number of diff erent 

sensors, imaging at a variety of ground scales and spectral bands, have become available. 

Each of these images has its own characteristics with diff erent levels of spatial or spectral 

detail. High spatial resolution images are required for an accurate description of shapes, 

features and structures whereas diff erent objects and land surfaces are better identifi ed if 

high spectral resolution images are available. Hence, one important aspect considered in 

data fusion techniques is to combine the high spatial and the high spectral resolutions in 

a b
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Figure 13.15 – Registering radar images: (a) reference image ( JERS93); (b) warp image ( JERS96) 

registered; (c) and (d) show the initial control points superimposed on reference and warp images in 

the lowest level of resolution.
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order to produce synthesised images, which retain the spectral values while improving the 

spatial characteristics of the original multispectral image. Th ese synthesised images should 

be as close as possible to reality and should simulate what a sensor having the same spectral 

bands but the highest spatial resolution would observe. Th ere are several methods that allow 

the improvement of the spatial resolution of images however most of them do not respect the 

spectral content of the original multispectral images. Th e problem with those methods is that 

very often they introduce strong distortions on the pixel spectra. As classifi cation processes 

are often based on spectral characteristics (spectral signatures) of objects, any error in the 

synthesis of the spectral signatures at the highest spatial resolution induces an error in the 

decision rule and the results of the classifi ers are strongly compromised.

Several synthesis methods by fusion have been published or are available in commercial 

software packages (Ranchin et al., 2003). Th e most common are those based on colour 

transformations and on statistical and numerical approaches. Th e former group comprises 

colour compositions in Red, Green and Blue (RGB) and  Intensity, Hue and Saturation 

(IHS) space whilst the latter deals with techniques such as Principal Component Analysis 

(PCA), Gram-Schmidt transform, band combinations using arithmetic operators and others 

(Pohl, 1998; Research Systems Inc., 2003). IHS method consists of converting the colour 

space RGB in the IHS space nearest to human perception. In this new space, the intensity 

is replaced by the high resolution band, before carrying out the inverse transformation of 

the IHS space to the RGB space. Th e PCA method transforms a multivariate data set of 

intercorrelated variables into a set of new un-correlated linear combinations of the original 

variables. It consists of the computation of the correlation matrix or covariance matrix, 

eigenvalues and eigenvectors and the principal components themselves.

Th e HPF (high pass fi lter) method, proposed by Chavez et al. (1991) is a technique based 

on injecting high frequency components into resampled versions of the multispectral data. 

It consists of an addition of spatial details, taken from a high-resolution image, into a 

bicubically-resampled version of the low-resolution image. Studies conducted by Chavez et 

al. (1991), Wald et al. (1997) and Terrettaz (1998) have demonstrated the superior performance 

of HPF results in preserving the spectral features of the enhanced bands. Th e main drawback 

of the HPF method is that the fi lter has a fi xed kernel size and resolution; it is diffi  cult or 

even impossible to fi nd one optimal fi lter for various ground cover types of diff erent sizes 

(Zhou et al., 1998).

Recently, several authors have used the multiresolution analysis and wavelet transforms 

to introduce the spatial information into the spectral bands (Guarguet-Duport, 1996; 

Yocky, 1996; Alparone et al., 1998; Ranchin & Wald, 1998; Zhou et al., 1998; Ventura et al., 

2002; Aiazzi et al., 2002; Teggi et al., 2003; Shi et al., 2003 and Ranchin et al., 2003). All 

these studies are unanimous in suggesting that fusion techniques based on multiresolution 

decomposition of images (using wavelets transforms) preserve the spectral content better 

than classical techniques and thus the possibility for automatic classifi cation of the resulting 

images is not compromised.
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.. Multiscale analysis for image fusion

Image fusion methods are usually a trade-off  between the spectral information from high 

spectral – low spatial resolution images and the spatial content from high spatial – low 

spectral resolution images. Ranchin et al. (1994, 1996) and Ranchin & Wald (1996, 1998) 

introduced and applied the ARSIS concept (from its French acronym ‘Amelioration de la 

Resolution Spatial par Injection de Structures’, which means ‘spatial resolution enhancement by 

injection of structures’) to combine from SPOT multispectral (20 m spatial resolution) and 

SPOT panchromatic (10 m) images to SPOT multispectral and images from the Russian 

panchromatic sensor KVR-1000 (2 m). Th e results ensured the eff ectiveness of the ARSIS 

method in preserving the spectral content of the original images when improving their 

spatial resolution. Ranchin et al., (2003) applied the ARSIS concept through two diff erent 

multiscale models – the generalised Laplacian pyramid and the ‘à trous’ wavelet algorithms – 

in order to combine multiscale (4 m) and panchromatic (1 m) IKONOS images. Zhou et al., 

(1998) applied a pyramidal wavelet transform algorithm to merge a Landsat TM and a SPOT 

panchromatic images of an urban area in San Diego, California. Th e results were compared 

with three other standard fusion approaches – IHS, PCA and Brovery – and simultaneous 

best spectral and spatial quality were only achieved with wavelet transform methods. Ventura 

et al., (2002) also found that wavelet methods outperform when compared with the IHS 

method on merged multispectral and panchromatic Landsat ETM+ images of an urban area 

around the city of Brasilia, Brazil.

Th e multiscale transform algorithm used in this study was the pyramidal linear wavelet 

transform, which means that the computation of the approximation was done applying a 

one level pyramidal wavelet transform using linear spline functions as scaling functions. 

First, the multispectral images (MS) were geometrically registered onto the panchromatic 

image (P). Th en the P image was decomposed into a wavelet representation at the same 

resolution of the MS images. Next, the MS images, band by band, were combined with the 

components of the multiscale representation of the P image. As a result, the approximation 

images of the merged wavelet representation were the MS images whereas the detail were 

those images derived from the P image. Th en the inverse wavelet transform was performed 

to obtain the fi nal merged image, which has multispectral bands like the original MS image 

but with an improved spatial resolution from the P image. In order to assess the performance 

of multiscale analysis, its results were visually compared with four traditional methods for 

remotely sensed image fusion: IHS, Brovery, Principal Components and Gram-Schmidt.

.. Test site and data

Th e site chosen to perform the multiscale approach for image fusion was a recently formed 

reservoir located at the outskirts of the city of Lavras, Brazil. Th e multiscale fusion technique 

was applied in an attempt to improve the spatial resolution of the original MS image in order 

to allow a better characterization of the protection zone along the edges of the lake. Th e 

images used were a subset of the 218/75 scene with three refl ective bands 4, 5, 3 (RGB; 30 m) 

and the 15 m resolution panchromatic band of the Landsat 7 ETM+ (fi gure 13.15). Th e images 

were acquired on February 2003.
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.. Results and discussion

Th e output images of the fi ve diff erent fusion methods applied in this study are presented 

in fi gure 13.16. Pyramidal Wavelet Transform (WT), IHS Transform,  Brovey Transform, 

Principal Components Transform and  Gram-Schmidt Transform were visually assessed 

according the spectral and spatial quality of the synthesised images. Good quality stands for 

the image that better preserve both the spectral information from the multispectral images 

and the spatial information from the panchromatic image. Th e preservation of spectral 

characteristics is important for calibration purposes and for ensuring that targets that are 

spectrally separable in the original data are still separable in the fused data set (Chavez et al., 

1991).

Visual inspection of the synthesised images showed that images fused using the Brovey 

transform preserved the least of the spectral information of the multispectral image. 

Distortions of pixel values were very clear in agricultural and natural vegetated areas. As the 

spatial resolution was improved it might be concluded that with the Brovey method more 

emphasis is placed on the spatial information from the panchromatic image than on the 

spectral content from the multispectral image. Zhou et al., (1998) found similar results for 

fusion of SPOT PAN and multispectral Landsat TM images. Th e IHS method presented 

less distortion of spectral values than the Brovey method. However, modifi cation of spectral 

values was also visible on the IHS transform fused image, especially for water and bare soils 

but also for vegetation. Th e explanation for such distortion of spectral values is that the IHS 

method is based on the assumption that a close correlation between the panchromatic image 

(0.520-0.900 m) and the intensity component exists. Th is assumption is well satisfi ed for 

ETM+ bands 3 (0.630-0.690 m) and 4 (0.750-0.900 m) but it is not the case for band 5 

(1.55-1.75 m).

Th e pyramidal wavelet transform algorithm produced a better preservation of the spectral 

content and also a better spatial resolution than the classical IHS, the Brovey method, 
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Figure 13.16 – Panchromatic (left) and multispectral (right) images used in this study. Please consult 

the enclosed CDROM for a full colour version.
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Principal Components and the Gram-Schmidt transform. Th e wavelet coeffi  cients provided 

by the multiscale analysis of the high spatial panchromatic image (P), between the scale of 

the P image and the scale of the multispectral image (MS), describe properly the missing 

information for the synthesis of the MS image at the same spatial resolution as the one of 

the P image. Hence, the fused image contains both the structural details of the higher spatial 

resolution P image and the rich spectral information from the MS image.

.. Conclusions

Visual analysis of the fused images has shown that all tested methods produced a signifi cant 

improvement over the original image since the structures of the panchromatic image 

have been injected in the multispectral image in all fusion methods. However, besides 

the improvement on spatial resolution a good quality fused image should also preserve 

the spectral information from the multispectral image. In this context, the multiscale 
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Figure 13.17 – Original multispectral image (top left) and the results from fi ve diff erent fusion 

methods: Pyramidal Wavelet Transform (top right), IHS Transform (middle left), Brovey 

Transform (middle right), Principal Components Transform (bottom left) and Gram-Schmidt 

Transform (bottom right). Please consult the enclosed CDROM for a full colour version.
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analysis with wavelet transform outperformed the classical IHS and Brovey methods since 

the spectral content was better preserved on the synthesised image from the pyramidal 

wavelet transform method. Th e high-quality preservation of the spectral information and 

the improvement of the spatial content on synthesised image from the pyramidal wavelet 

transform method may improve the effi  ciency of further processing techniques such as the 

application of a classifi er, whether it would be automatic or not.

13.6 Case study III – feature extraction for change detection

.. Introduction

Digital change detection as commonly applied to temporal remotely sensed images produces 

another digital image, where pixel values represent the degree of diff erence between the 

temporal scenes under investigation. In the ideal case, areas of land cover change would 

show high positive or negative values, whereas non-changed areas would be zero-valued. 

Nevertheless, additional sources of noise and the spatial multiscale nature of the input images 

are propagated to the outputs of digital change detection, demanding the use of tools that 

take these characteristics into consideration. Th is section presents a new approach to deal 

with noise and multiple spatial scales during change detection. Th e methodology is based 

on noise modelling in wavelet space for effi  cient and automatic thresholding. Th e objective 

of this new method was to reduce the sensitivity of digital change detection to the eff ects 

of radiometric and geometric misregistration by extracting changes according to size classes 

using a multiscale approach.

Current methods used to compare two or more remotely sensed images and to detect 

diff erences among them are dependent on accurate radiometric normalisation and geometric 

rectifi cation (Dai & Khorram, 1998; Schott et al., 1988). Th ese prerequisites are generally hard 

to achieve in many situations due to the lack of (radiometric) calibration data and diffi  culties 

in locating (geometric) control points. In addition, a threshold value to separate change 

from no-change areas must be defi ned. In the absence of noise, thresholding a diff erence 

image would be an easy procedure leading to reasonable results. Unfortunately, discrepancies 

in sensor characteristics, atmospheric transparency, vegetation phenology and errors in 

geometric registration are a few examples of noise sources present in every multitemporal 

and/or multisensor data set derived from optical remote sensing.

In the operational context, digital change detection has been normally performed with a 

category-based approach that compares land cover maps produced at diff erent points in time. 

Th e choice for this approach is motivated by the straightforward information about old and 

new land cover classes represented by each image pixel that has undergone land cover change. 

However, uncertainty propagation reduces considerably the confi dence level of change 

detection results obtained with map comparisons (Shi & Ehlers, 1996; Bruin & Grote, 2000). 

For example, two highly accurate classifi cation results, say 80, would produce a mere 64 

accurate change detection result (Stow et al., 1980). In the research context, radiometric-

based change detection techniques are more popular than category-based ones because of 

their ability to overcome the above-mentioned drawback, but as pointed out before, they 

are more sensitive to errors in geometric and radiometric registration. Th is becomes even 
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more important when diff erent sensors with diff erent spatial and radiometric resolutions are 

used for change detection. Moreover, the amount of change is dependent on the empirically 

defi ned thresholds, for which there is no theoretical guidance.

Consequently, a need for automatic analysis tools able to minimise these requirements has 

been recognised (Singh, 1989). Th e dilemma relies on how to diff erentiate real changes from 

misregistration (geometric and radiometric) noise.

.. Multiscale products for feature extraction

A change image, produced by any of the standard radiometric change detection methods 

(e.g., image diff erencing), was decomposed into several high frequency bands with variable 

resolutions plus a low frequency band at the coarsest resolution. Th e decomposition was 

obtained by applying the 2D extension of the algorithm ‘à trous’ (Holschneider et al., 1989) 

with a cubic spline as the scaling function: After decomposition, the diff erences between the 

images were separated into fi ve detail levels ranging from fi ne to coarse, as well as a smoothed 

representation of the original diff erence image (fi gure 13.17). At this stage, changed sites were 

discriminated according to size classes. Small area changes and geometric misregistration 

are captured in the fi ne details representation whereas overall changes, like variations due 

to phenology, were captured at the coarse details levels and at the smoothed representation 

of the original diff erence image. Th us, by solely using information provided by intermediate 
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Figure 13.18 – (a) Result of image diff erencing (TM band 3 from 1998 and MSS band 2 from 1981. 

(b, c, d and e) Detail images ranging from fi ne to coarse and (f ) smoothed version of (a) decomposed 

with the ‘à trous’ algorithm.
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scale levels, spurious eff ects of misregistration were fi ltered out and the search space was 

considerably reduced.

Meaningful signal components were further separated from noise by multiplying wavelet 

scales. Th e so-called multiscale product integrates in one image the information contents 

of each scale level involved in the multiplication. Sadler & Swami (1999) characterised the 

method statistically and evaluated its performance for detection and estimation of edges. 

Xu et al. (1994) applied the multiscale product for fi ltering of magnetic resonance images, 

0 2000 m MN
18o

Composite  3 2 1  MSS, July 1981. Pixel size 60 m Composite  4 3 2 TM, Aug 1998. Pixel size 60 m

Composite 4 5 3 TM, Nov 1985. Pixel size 30 m Composite 4 5 3 TM, Aug 1998. Pixel size 30 m
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Figure 13.19 – Data set used in this study. Using these color combinations, forest areas appear in 

red tones while mining sites appear in white. Please consult the enclosed CDROM for a full colour 

version.
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Sadler et al. (1998) for shock wave detection in acoustics and Carvalho (2003) for automatic 

detection of corrupted values in remotely sensed time series. Th e choice of scales to include in 

the multiscale product has an eff ect on the sensitivity of the approach to the size of objects in 

the scene.

Th e multiscale product is considered locally constant. Th is is the classical signifi cance testing, 

which detects only the coeffi  cients that are greater than their local standard deviation 

multiplied by a constant C. In this study, C was set to 2 and multiscale product coeffi  cients 

Color composite

0 1000 m

MN

18o
Multiscale product

Band 5, TM 1985

Band 3, TM 1985
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Figure 13.20 – Straightforward visualisation of changed sites. Arrows indicate areas where (yellow) 

deforestation and (blue) mining activities increased. Please consult the enclosed CDROM for a full 

colour version.
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that do not pass the test are set to zero. Th e purpose of signifi cance testing is to further 

remove noise by excluding unimportant multiscale product coeffi  cients.

.. Test site and data

Th e site chosen to evaluate the approach is located near the city of São Tomé das Letras 

and is used mainly for agriculture, rock exploitation and for the protection of remnants of 

Cerrado (Brazilian savanna), rocky fi elds and semideciduous Atlantic forest. In the last 20 

years there has been an increase of mining activities and losses of forest cover among periodic 

changes due to agricultural activities. One Landsat MSS image from July 1981 and two 

Landsat TM images from November 1985 and August 1998 were used in this study (fi gure 

13.18). Each pixel of the Landsat TM and MSS images covers a ground area of about 900 m2 

and 3600 m2 respectively.

Landsat TM bands 2 (520-600 nm), 3 (630-690 nm), 4 (760-900 nm) and Landsat MSS 

bands 1 (500-590 nm), 2 (610-680 nm), 3 (790-890 nm) were chosen to perform this 

experiment because they cover relatively comparable portions of the electromagnetic 

spectrum (Buiten & Clevers 1996). Note that spatial resolution, sensor characteristics and 

phenological conditions are very heterogeneous among these images (fi gure 13.19). Th e images 

were reduced to the same pixel size by applying a one level pyramidal wavelet transform using 

a cubic spline as scaling function. Due to decimation, the pixel size for the Landsat TM 

images became 60 by 60 m after the transformation. Th e Landsat MSS image, preprocessed 

by the U.S. Geological Survey and purchased with a pixel size of 57 by 57 m, was resampled to 

60 by 60 m with a nearest neighbour algorithm. No radiometric rectifi cation was applied to 

the input images and spatial misregistration (RMS error <1 pixel) ranged from one to three 

pixels when evaluated visually. Ground data were recorded during fi eld visits in 1999 when 

sites of deforestation, new rock exploitation, annual crops, and forest regrowth were located 

in the fi eld and over orthophotos (scale 1:10,000) acquired in 1984.

.. Results and discussion

Using the multiscale product in a simple colour composite, visualisation of changed sites can 

be readily done. To visualise changes from dark to light (e.g. deforestation in TM band 3), one 

must use the oldest image to make the composite (fi gure 13.20). Changes from light to dark 

(e.g. reforestation in TM band 3) are better visualised when using the most recent image. Th is 

a b c

d e

0 1000 m
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Figure 13.21 – Landsat TM from (a) 1998, (b) 1985 and (c) respective diff erence image. (d) 

Details of the diff erence image at the fi rst scale level. (e) Smoothed version of the diff erence image 

at the fourth scale level. Note the misregistered road depicted in (d), while overall diff erences like 

phenological condition of vegetation patches are depicted in (e).



Multiscale Feature Extraction from Images Using Wavelets – 269

is because the background at sites where changes are to be visualised must be dark so that the 

changes of interest are emphasised. All changes detected by this visualisation procedure did 

occur although their quantifi cation was not possible. Note that, in fi gure 13.6 (3), the whole 

triangular forest fragment at the bottom right disappeared between 1985 and 1998 although 

only its centre is being enhanced. Th is straightforward visualisation might be of much use 

when large areas are to be evaluated. Misregistration eff ects and small area changes were 

isolated as fi ne details (fi gure 13.20d), while diff erences in phenological characteristics and 

atmospheric conditions were captured in the smoothed representation as overall diff erences 

between the images (fi gure 13.20e).

Irrelevant information that could be considered noise in the diff erence image (fi gure 13.21a) 

does not appear in the change image built with the product of wavelet scales (fi gure 13.21b). 

Th is ‘cleaning’ eff ect facilitates the analysis and understanding of remotely sensed images. 

In fi gure 13.21, vegetation removal (black arrows), reforested areas (grey arrows) as well as 

new rock exploitation sites (white arrows) were pinpointed successfully without previous 

radiometric rectifi cation or threshold defi nition while diff erences not related to land cover 

changes were bypassed.

.. Conclusions

Th e behaviour of changes at diff erent scale levels as resulting from the new method presented 

here enables their discrimination according to size classes. Hence, using information from 

intermediate scale levels one can minimise the problems mentioned above. Th e method was 

found to be less sensitive to spatial and radiometric misregistration, although fi ne details are 

lost as well. It can be applied to the outputs of any change detection technique such as image 

rationing, principal components, change vector analysis etc. As for the selection of signifi cant 

wavelet coeffi  cients, the selection of scale levels to be considered for further analysis can be 

driven by statistical tests, which are useful when no knowledge exists on the size of features 

of interest. Changes in the study area were well discriminated but their quantifi cation was 

not possible when using information from limited scale levels. Further research on the 

combination with other techniques, like region growing algorithms, could be a solution 

62
30

Figure 13.22 – 3D view of the diff erence image between band 3 of Landsat TM from 1998 and band 

2 of Landsat MSS from 1981 (left). 3D view of the product of diff erences at second and third scales 

(right).
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to determine the spatial extent of changed sites. Applications of the proposed method 

include, for instance, the automatic selection of changed sites for GIS updating and the fast 

identifi cation of priority areas for fi eld check when large data sets are to be evaluated. Finally, 

the visualisation of changed sites is straightforward with a simple colour composite avoiding 

any threshold defi nition, radiometric rectifi cation or accurate geometric registration.



Chapter 14

Contextual Analyses of Remotely Sensed 

Images for the Operational Classifi cation of 

Land Cover in United Kingdom

Robin M. Fuller, Geoff  M. Smith & Andy G. Th omson

14.1 Introduction

Th e use of remote sensing and image analysis for operational mapping at national scales 

requires a range of tools to help achieve the necessary accuracy and consistency despite 

variations in image quality, image acquisition dates, seasonal changes in vegetation, and a 

range of other confounding factors which distort or alter spectral signatures of the target 

classes.  Contextual analyses can help to generate a coherent map structure, correct errors and 

extend the thematic scope of classifi cations. Th is is especially important when producers are 

asked to meet the wide-ranging needs of multiple end-users.

Many papers describe procedures of contextual classifi cation where measures of context 

are used directly in the classifi cation process (e.g. Cihlar et al., 1998; Stuckens et al., 2000; 

Debeir et al., 2002; Melgani & Serpico, 2002; Steel & Redmond, 2002). Whether intentional 

or coincidental, the eff ect of such classifi ers is often to mimic the true structure of many 

landscapes which are divided into discrete parcels of uniform cover and use. Whilst such 

approaches may be very powerful, operationally it can be diffi  cult to exert adequate control 

over the outcomes – for example, where the procedures attempt to balance contextual and 

spectral probabilities. Other papers use post-classifi cation fi ltering to remove the ‘noise’ of 

mis-classifi ed pixels in the classifi ed data (e.g. Kim, 1996; Zukowskyj et al., 2001). However, 

such approaches rely more on the fi lter’s geometric properties than the true landscape 

structure. Relatively few papers (e.g. Harris & Ventura, 1995; Groom et al., 1996; Barnsley 

& Barr, 1996) describe the use of contextual data in post-classifi cation processes to correct 

and refi ne the basic outputs of spectral classifi cation. However, such procedures can usefully 

exploit existing knowledge of landscape structure and habitat distributions. Th e methods can 

be very powerful in addressing specifi c problems which arise with individual classifi cations. 

Th ere is greater scope to use a variety of data from independent, validated sources. Th ere is 

considerable fl exibility in the way such data can be used. Moreover, the application may use 

fully objective criteria. Th e procedures, while complex in concept and subtle in eff ect, may be 

relatively simple in defi nition, operation and consequence. Th us, the results obtained can be 

easily understood by users of the resulting data. Finally, contextually derived products can be 
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readily be documented, with the processes and results remaining completely transparent to 

the user.

Th is chapter draws, fi rst, upon experience gained in making the remotely sensed  Land Cover 

Map of Great Britain (LCMGB), nominally of 1990 (Fuller et al., 1994a). It contrasts the very 

simple post-classifi cation corrections applied then with the use of geographical information 

systems (GIS) and GIS-based procedures (Smith et al., 2001) developed in the production of 

the UK Land Cover Map 2000 (LCM2000 – Fuller et al., 2002). In LCM2000, contextual 

analyses operated throughout. Context was used to generate a map structure which mimicked 

the landscape structure; image spectral data were analysed within the context of the map 

structure; errors in spectral classifi cations were corrected using contextual analyses; and 

cover-classes were refi ned and thematically extended using contextual data. Th ese processes 

all helped LCM2000 to meet the many and varied needs of end-users.

14.2 The land cover map of Great Britain

LCMGB was initially developed as a ‘demonstrator’ project, though subsequently there 

have been more than 500 licensed users of the data. Th e map was a conventional raster-

based classifi cation of satellite images (Fuller et al., 1994a) recorded mostly in 1988-1989. 

Landsat Th ematic Mapper (TM) red, near infrared (NIR) and middle infrared (MIR) 

refl ectances were used for the classifi cations (Fuller & Parsell, 1990). Summer and winter 

images were used in conjunction, where available (Fuller et al., 1994b), co-registered to the 

British National Grid (BNG), with 25 m output pixels, giving 6 bands of composite data. A 

maximum likelihood classifi cation gave a map with 25 cover-classes. Simple contextual rules 

were used to refi ne class-distinctions. An image fi lter removed isolated pixels and thereby 

reduced ‘noise’ in the data.

.. Th e scope for contextual correction in LCMGB

At the time of LCMGB production, most image analysis systems were extremely limited 

in their potential. Th ey off ered little scope for genuine GIS-integration and for elaborate 

spatial-contextual analyses. Data storage problems hindered complex analyses and limited 

the detailed recording of intermediate products and fi nal data outputs – the project had 

access to a 1 gigabyte disk, about the maximum generally available at the time, with disk 

storage then costing 1000 times what it does today. It is in this context that the LCMGB and 

its contextual analyses should be viewed.

It is important to understand fully the characteristics of the LCMGB to recognise the limited 

scope for contextual correction. Th e 1990 map was simply a single layer, raster grid, with each 

cell recording the maximum likelihood class as a digital number (DN). Th e DNs ranged from 

0 to 25, with 0 representing unclassifi ed pixels and values between 1 and 25 recording the fi nal 

output classes numbered 1 to 25. Th ere was no information on the spatial coherence of pixel-

groups, other than intuitively, through their x-, y-locations in the raster. In the output map, 

there was no information on the probability of the maximum likelihood class-allocations, nor 

of the alternative classes and their probabilities. To record this information, along with where 

and what contextual corrections were applied, would have increased the size of the output 
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dataset by an order of magnitude. And for reasons of limited disk space, there was not even 

the scope to identify straightforwardly, at full spatial resolution, which image-combinations 

contributed which pixels to the overall mosaic of cover.

.. LCMGB contextual analyses

LCMGB contextual analyses were mostly applied to correct errors in the classifi ed map 

data, rather than to refi ne or extend the classifi cations (Groom et al., 1996). Th e procedures 

involved the development of zonal masks, within which certain classes were disallowed. In 

practice, the application of the mask was an arithmetic process, with masked areas given 

DN values of 100. When the mask was added to a map of classifi ed spectral classes (usually 

around 80 in number before merging to the fi nal 25 classes (Kershaw & Fuller, 1992)), DN 

values within a mask area became >100 and those outside the mask-zone retained the original 

values <100. It was thus possible to single out subclasses within or outside of masked areas 

and to correct erroneous elements, renumbering them to an alternative class while simply 

reverting allowable subclasses to their original value.

Any external data which might have been available for contextual applications were deemed 

either too costly or having an inappropriate format or with insuffi  ciently high resolution for 

operational use – and often a combination of all three problems. Th us, all LCMGB rules 

relied essentially upon internal context to defi ne masks, perhaps with limited checking 

against paper maps.

Terrestrial/maritime corrections

A coastal mask was used to identify maritime cover types out of context in terrestrial 

locations (e.g. examples of ‘beaches’ recorded inland); the mask was also used to correct 

terrestrial habitats in a maritime context (e.g. erroneous ‘urban’ areas found in inter-tidal 

zones). Semi-automated methods were developed to make masks. A spatially subsampled 

image, at one-third the original size, was constructed with three zones: 

1   pixels classifi ed as a maritime class;

2  ‘inland water’;

3   ‘urban’, ‘suburban’ and ‘bare ground’.

A modal fi lter with a 3 by 3 kernel simplifi ed the mask. A line was then defi ned interactively 

to enable removal from the mask of mis-classifi ed maritime elements (i.e. those found 

inland). Th is line only had to be very accurately defi ned where exclusively maritime 

habitats met exclusively terrestrial ones (e.g. coastal towns, arable cliff -tops or freshwater 

coastal lagoons); the defi nition was less critical where semi-natural vegetation fringed the 

shore, as such habitats might be found in either zone and there had been no intention of 

changing the classes, whichever side of the line they occurred. Th e mask was then returned 

to its original size (i.e. zoomed x 3 and resampled by nearest neighbour). A 3 by 3 modal 

fi lter was used to remove the angularity of the coastline arising from the x 3 zoom. Th e 

mask was then simplifi ed to a single coastal class with DNs of 100. Operation of the mask 

used the straightforward addition and renumbering procedure, as described earlier. Inland 

‘beaches’ thus became inland ‘bare ground’; inland ‘salt marshes’ were changed to ‘arable land’; 

inter-tidal ‘arable’ land became ‘saltmarsh’; ‘suburban’ and ‘urban’ areas on the shore were re-

numbered to become ‘beaches’.
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Urban/arable corrections

Mixed pixels of suburban land, essentially recording mixed vegetated and non-vegetated 

surfaces, were frequently mis-classifi ed as ‘arable’ cover. Urban masks were constructed 

by selecting the ‘urban’, ‘suburban’ and ‘bare ground’ subclasses and aggregating them 

thematically into a mask with DNs of 100 in the urban zones. Th e resultant mask was 

generalised by operating a 5 by 5 modal fi lter, running the data through the fi lter twice. A 3 by 

3 maximum fi lter removed small holes in the mask. Th e mask was then overlaid onto the map 

and the mis-classifi ed ‘arable’ pixels in urban zones were identifi ed by arithmetic addition. 

Th ese were relabelled to the ‘suburban’ class.

Upland corrections

Upland masks allowed corrections of upland mis-classifi cations (e.g. ‘arable’ and ‘urban’ land 

in uplands); they also allowed a distinction between ‘lowland heaths’ and ‘upland heather 

moors’. A one-third size output was created by subsampling. Upland habitats – ‘moorland 

grass’, ‘open shrub moor’, ‘dense shrub moor’, ‘herbaceous bogs’ and ‘bracken’ – were all re-

numbered to DN values of 100. A 9 by 9 modal fi lter was used to remove ‘noise’ from the 

initial mask. Th e resulting map still had larger remnant areas of incorrect ‘upland’. Interactive 

editing (assisted by reference to topographic map in paper form) removed erroneous ‘upland’ 

areas (re-numbering them to 0). Th e mask was then returned to the original resolution and 

3 by 3 modal fi lter was used to remove the angularity of the upland edges. Th e arithmetic 

mask-addition was applied to identify habitats in erroneous context for re-numbering to the 

most appropriate classes.

Manual re-coding

Locally, there was a very small amount of general manual re-coding. Where substantial and 

very obviously incorrect classifi cations were found, it was possible to target the mis-classifi ed 

elements by thematic selection – in reality, a numerical selection made within the image 

analysis system, combined with a manually defi ned ‘region of interest’ to isolate the errors 

and rectify the problems. Th e image analysis system only off ered fairly awkward ‘graphics 

overlay’ procedures for areal defi nition and spatial selection, making this a tedious and time-

consuming task; consequently, this approach was very rarely used.

Contextual fi ltering

Th e fi nal stage was to use an isolated pixel fi lter. A 3 by 3 window was scanned across the 

resultant map. Where a pixel was the only member of its class in the 3 by 3 neighbourhood, 

the dominant class of the other 8 pixels was substituted. Th is had the eff ect of removing some 

of the apparent ‘noise’ in the classifi ed map.

.. Concluding comments on LCMGB contextual analyses

It is interesting to note that it was very diffi  cult, with the data storage available at the time, to 

track and record quantitatively the impacts of the various correction and fi ltering procedures 

described above, especially once individual scenes were trimmed and fi tted into the general 

mosaic of classifi ed images which later became LCMGB. Th e account by Groom et al. (1996) 

used test areas to assess the proportional impact; these may be representative of the LCMGB 

as a whole, though this is not verifi able. Contextual procedures increased agreement by 

4.5 in a sample of 18 one-kilometre validation squares. Th e isolated fi lter contributed <1 
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change with the remaining improvements coming from mask-based corrections. Th us, while 

contextual corrections made an important contribution to the LCMGB, their infl uence was 

relatively small in areal terms.

14.3 Land cover map 2000

.. Background

LCM2000 was designed both as an update and an upgrade (Smith & Fuller, 2001) of the 

original LCMGB. A programme of research and development had produced a methodology 

based on  image segmentation, vector-conversion of segments into parcels, and object-based 

classifi cation of the parcels (Smith et al., 1998). In eff ect, the segmentation put every pixel 

into context when it grouped it with similar neighbours in the land parcels. Th e classifi cation 

of each parcel then drew upon the member-pixels to derive mean refl ectances and, comparing 

these with a training set, applied a label for the entire parcel. Th e procedure is a form 

of contextual classifi cation for the pixels concerned. Post-classifi cation stages also used 

contextual analyses, to correct errors of mis-classifi cation and to extend the classifi cation 

thematically, in order to meet user needs.

.. Broad habitats and LCM classes

It was a logical consequence of LCMGB’s widespread use that LCM2000 was funded by a 

consortium of users. Th ese users comprised Government Departments with responsibilities 

for environmental policy, and Government agencies with executive roles in environmental 

protection and conservation (see the Acknowledgements section).

Key members of the consortium specifi ed a requirement to map ‘Broad Habitats’. Th ese had 

been identifi ed for implementation of, and reporting under, the UK Biodiversity Action Plan 

(Department of the Environment, 1994). Th e classifi cation was designed to encompass the 

entire range of UK habitats (UK Biodiversity Steering Group, 1995); it was described by 

the Joint Nature Conservation Committee ( Jackson, 2000). Th e Habitats include a number 

of more narrowly defi ned ‘Priority Habitats’ which the Government is required to protect 

under the European Union Habitats Directive (Council Directive 97/62/EC of 27 October 

1997). Monitoring of the Broad and Priority Habitats is also a requirement of the 1992 UN 

Convention on Biological Diversity. It is clear why the funding consortium would want 

LCM2000 to contribute to this monitoring process.

Th e inclusion of the Broad Habitats in the LCM2000 classifi cation presented a major 

challenge in production. Nonetheless, the team aimed to map, as far as it was possible, 

the widespread examples of terrestrial, freshwater and coastal Broad Habitats (table 14.1). 

Th is demanded the use of far more than just spectral image data, as some classes were 

characterised by soils, others by plant indicator species, while some implied elements of land 

use in their defi nitions. Contextual information was therefore crucial to the defi nition of such 

classes and to their distinction as thematic map entities. In addition, LCM2000 subdivided 

some Broad Habitats to meet the wider needs of other users. Th ese additional classes also 

benefi tted from contextual analyses.
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In practice, LCM2000 is really a thematic classifi cation of spectral data recorded in satellite 

images. Spectral classes (Kershaw & Fuller, 1992) were defi ned in the classifi cation process 

and later combined thematically. Th e thematic classes in turn were aggregated to build various 

classifi cation schemes. In practice, ‘Target classes’ (table 14.1, column 2) were considered the 

nearest match to Broad Habitats which could be achieved consistently and with a high level 

of accuracy. Subclasses (table 14.1, column 3) were then defi ned to give, as far as possible, 

the full complement of widespread Broad Habitats, together with a few other important 

cover types beyond the needs of the Broad Habitat classifi cation. Subclasses were mapped 

Table 14.1 – Widespread examples of Biodiversity Action Plan ‘Broad Habitats’ and their  relation 

to Land Cover Map 2000 ‘Target classes’ and ‘Subclasses’.

Widespread Broad Habitats LCM2000 Target classes LCM2000 Subclasses

Inshore sublittoral Sea/Estuary Sea/Estuary

Standing water/canals Water (inland) Water (inland)

Littoral rock Littoral rock and sediment Littoral rock

Littoral sediment Littoral sediment

Saltmarsh

Supra-littoral rock Supra-littoral rock and 
sediment

Supra-littoral rock

Supra-littoral sediment Supra-littoral sediment

Bogs Bogs (deep peat) Bogs (deep peat)

Dwarf shrub heath (wet/dry) Open and Dense dwarf shrub 
heathsDwarf shrub heath

Montane habitats Montane habitats Montane habitats

Broad-leaved woodland Broad-leaved wood Broad-leaved/mixed 
woodland

Coniferous woodland Coniferous woodland Coniferous woodland

Arable & horticultural Arable and horticultural Arable cereals

Arable horticulture

Non-rotational horticulture

Improved grassland Improved grassland Improved grassland

Neutral/calcareous semi-
natural/rough grasslands

Setaside grass

Neutral grassland Neutral grass

Calcareous grassland Calcareous grass

Acid grassland Acid grass and bracken Acid grass

Bracken Bracken

Fen, marsh and swamp Fen, marsh and swamp Fen, marsh, swamp

Built up areas, gardens Suburban and urban Suburban/rural developed

Continuous Urban

Inland rock Inland Bare Ground Inland Bare Ground

20 relevant BHs 16 target classes 26 target/subclasses
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consistently throughout the UK, but sometimes with compromises on accuracy. Subclasses 

were subdivided where this was considered valuable for even wider use of data. Th us 72 class 

Variants (Fuller et al., 2002) are the thematic components of the Target classes and Subclasses 

(and they are in eff ect the logical thematic aggregations of the spectral subclasses). Th ese 

class Variants were recognised where possible but not necessarily consistently (e.g. individual 

arable crops were recorded, where possible, but could not be distinguished once harvested).

In distinguishing Broad Habitats, some contextual analyses were based upon internal context 

within LCM2000, others drew upon external datasets. A key challenge lay in using contextual 

data which were not designed for such purposes and where, variously, limited thematic 

details, inadequate measurement accuracy, and poor spatial resolution forced compromises 

in operations and outputs. Because some Broad Habitats were defi ned using characteristics 

which could not be drawn either from images or tailored exactly from any other appropriate 

spatial data, LCM2000 distinctions had sometimes to diff er a little from those published 

( Jackson, 2000). Table 14.1 shows the mis-match in the ‘read-across’ between some Broad 

Habitat and Target class/Subclass distinctions. Diff erences in nomenclature (table 14.1) aim 

further to draw attention to diff erences of defi nition. Also, in table 14.1, a hard line between 

Target classes or Subclasses shows a distinction which is generally reliable; however, a dotted 

line identifi es situations where the distinction is more diffi  cult. Users should be aware of 

these issues: details are given later.

.. Image segmentation

Th e LCM2000 image segmentation is a form of a priori contextual analysis which examines 

pixels in the context of their neighbours to identify ‘relatively uniform’ areas in spectral terms. 

It builds the spectrally similar groups into segments which tend broadly to relate to objects in 

the landscape: for example, fi elds, woodlands, water bodies and settlements. In operation, the 

procedures comprised two separate stages: fi rst, edge-detection to identify boundary features; 

and, second, region growing from seed points selected to avoid the edges. Th ese are described 

in the following sections.

Images and band selection for segmentation

Landsat TM and Enhanced TM sensors were the fi rst choice for data supply. Indian 

Research Satellites LISS data off ered second-choice coverage. Summer and winter images 

were co-registered to BNG, giving 6-band composite images, with 25 m output pixels (as 

in 1990). It was only possible to use three bands for the edge-detection and segmentation 

algorithms. Various combinations of 3 out of the 6 individual bands were considered; so too 

the use of vegetation indices, principal components and other mathematical combinations of 

bands (Lillesand & Keiff er, 1994; Mather, 1987; Schowengerdt, 1997). Experimentation fi nally 

showed that straightforward image bands would generally be best in both stages. Summer 

images contributed two bands, and winter images one band. A TM/ETM summer image 

contributed red and MIR data, a LISS summer image contributed red and NIR bands (due 

to coarse MIR pixel size from this sensor); the winter band was NIR, which was generally 

the brightest.
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Edge-detection and segmentation

A  Sobel edge-detection algorithm was used to ensure that the seedpoints for segments were 

selected away from boundary features. Th e algorithm gave a value for each pixel related to 

the strength of any apparent edges at that point. Th ese values could then be used to identify 
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Figure 14.1 – Top: a subscene of combined summer-winter satellite images; bottom: the same scene 

segmented using the spectral data to build vector polygons (linework overlaid). Please consult the 

enclosed CDROM for a full colour version.
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regions with low scores, suitable for seedpoints. Th e growth of segments around seedpoints, 

and thus the level of segmentation, was controlled by the operator. Th ere was the potential 

to dictate the degree of region-growing and subsequent merging by setting thresholds for 

each spectral band and establishing the number of standard deviations expected to contain 

the majority of the pixels of a segment. Th e aim was to ensure a  fi eld-by-fi eld segmentation, 

also separating urban and suburban zones, and subdividing heterogeneous semi-natural zones 

into meaningful segments, with minimal over-segmentation of land parcels. Trials showed 

that a threshold equal to 80 of the refl ectance standard deviation range was appropriate 

for segmenting each band. Th ese thresholds allocated about 95 of all pixels to segments; 

they gave fi eld-by-fi eld separations, though sub-segmenting some fi elds – a little over-

segmentation was necessary to prevent the growth of mixed chains of edge pixels and to 

subdivide urban/suburban areas to match Subclass requirements.

Post-segmentation generalisation and boundary rejection

Simplifi cation of unnecessary sub-segmentations was achieved using ‘intelligent’ 

generalisation methods. Procedures tested in a series of experiments showed that:

•   non-segment edge pixels should be dissolved into adjoining parcels;

•   single-pixel islands should be dissolved into their surroundings;

•   the pixels of small segments <9 pixels (≤0.5 ha) should be attached to their nearest 

appropriate segments using a spectral minimum distance rule;

•   small, spectrally similar, segments should be merged.

Once a generalised segmentation was achieved, it was necessary to create vector versions 

in the GIS database. Th is was simply a procedure of raster-to-vector conversion, where the 

boundaries between the segments were represented by vector lines. Th is created ‘land parcels’ 

(fi gure 14.1), to which attributes could then be attached.

.. Contextual classifi cation – maximum likelihood classifi cation of parcels

Th e per-parcel classifi cation used a maximum likelihood algorithm (Lillesand, 1994; Mather, 

1987; Schowengerdt, 1997) to determine class membership in the same way as a per-pixel 

classifi cations would have done. Training for parcel-based analyses essentially operated in the 

same way as that used in conventional per-pixel classifi cation. However, training areas were 

identifi ed individually by pointing to the land parcels, with no need to draw their outlines; 

the delineation was thus objectively based. Th e mean refl ectances per band for each image 

segment were calculated from a shrunken, core area, excluding edge-pixels as far as possible. 

Th e shrinkage was made a dynamic process whereby 25 m of shrinkage was applied and, if 

insuffi  cient raster data were collected (<4 pixels), the amount of shrinkage was reduced by 

2.5 m and the raster extraction repeated. Th is process was iterated until adequate data were 

extracted or the amount of shrinkage reached zero. Data on the number of pixels extracted 

and the amount of shrinkage used were stored as land parcel attributes for future reference.

Th e per-parcel classifi cation procedure compared each parcel’s mean refl ectances with the 

training set and recorded the most likely spectral subclass in statistical terms: it actually 

stored probabilities and subclass-labels for the top fi ve spectral subclasses, usually covering 
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>90 of the probability distribution. Because each pixel of a parcel takes the class of the 

parcel, the analysis can be thought of as a form of contextual classifi cation.

By way of contrast, a raster classifi cation of the images, mimicking the 1990 product 

in structure, was also made. Per-pixel details were also added to the land parcels: the 

proportional cover per-pixel was recorded, giving scores for the top fi ve subclasses and 

thereby giving an estimate of within-parcel heterogeneity. Th e 1990 cover per-pixel was also 

summarised per-parcel.

In some inter-tidal zones, it was necessary to use per-pixel classifi cations to contribute 

to LCM2000. Th is was because a pre-processing stage of haze-correction, developed for 

terrestrial areas (Liang et al., 1997), had caused a distortion in the spectral signatures of some 

inter-tidal areas, preventing accurate segmentation. Th e per-pixel thematic results for the 

inter-tidal areas were converted to land parcels for inclusion in the dataset.

.. Parcel selection for post-classifi cation contextual alterations

Contextual alterations comprised two distinct elements: fi rst, it was necessary to select the 

candidate parcels for a particular alteration; then, for each candidate parcel, the class code 

in the database had to replaced and the alteration recorded as a parcel attribute, as part of its 

processing history. Sometimes, these elements were kept separate: parcels were selected by 

interactive database queries and saved as a set for later re-coding. Other times, where changes 

were few, both stages were applied interactively, albeit using software which automatically 

altered the class-codes for the interactively selected parcels. Mostly, the parcel-selection and 

code-changes were made together in a fully automated process. Here, the selection rules were 

pre-defi ned in code, applied automatically, the selected parcels were renamed accordingly and 

their processing history updated. Whether the queries were applied interactively or prescribed 

and applied in background processing, a sequence of queries could be combined into a series 

of inter-dependent selection procedures, before operation of contextual analyses.

Th e defi nitions and operations of selection rules were much more subtle in their use than 

those of LCMGB 1990. Some rules were scene-specifi c and tailored to particular problems 

associated with a scene or a geographic region. Others were applied universally, though 

with the scope to vary the stringency of their operation in diff erent regions or with diff erent 

satellite scenes. Some selection rules were aspatial, for example, using a low probability of 

class-membership as a reason for a change. However, most rules also had spatial elements. 

Some relied purely upon internal context within the map product: for example, a parcel of 

erroneous ‘arable land’ surrounded completely by an urban context. Other selection rules drew 

upon independent external data, for example the use of the DEM to defi ne an altitude limit 

for ‘urban’ land.

When external datasets were interrogated for contextual use, the results were attached as 

parcel-attributes in the database. Mean height, slope and aspect of parcels were calculated 

by reference to a digital elevation model (DEM). An acid-sensitivity map (Hornung et al., 

1995) was used to defi ne ‘acid’, ‘neutral’ and ‘calcareous’ contexts for each parcel. Peat drift on 

a geological map identifi ed parcels with dominant peat soils >0.5 m depth. Th e European 

Union ‘CORINE Land Cover’ map (Brown & Fuller, 1996) provided certain land use 
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attributes needed to refi ne some of the Broad Habitats. With all these data recorded as parcel 

attributes, they could readily be used as criteria in the selection process.

Most external data used were in raster form. Th e cell-size sometimes matched that of 

LCM2000: for example, the coastal mask adapted from LCMGB. In other circumstances, 

the raster data were a little coarser: for example, the DEM was based on a 50 m grid. Acid 

sensitivity was recorded in very much coarser 1 km cells, but still provided indispensable 

contextual information. If such coarse data had been used to the correct a fi ner raster map, 

the underlying pattern of the coarse raster would have been clearly evident in the corrected 

product. However, when this coarse raster map was applied to the vector LCM2000, 

the vector structure obscured and generally rendered insignifi cant the artifi cial raster 

generalisation. Th e resolution of the vector data used as context also diff ered from that of 

LCM2000. Th e CORINE Land Cover map had a 25 ha minimum unit compared with 

LCM2000’s at >0.5 ha. Again, the coarseness of the contextual dataset was hidden when 

LCM2000 was labelled according to its intersection with the coarser CORINE vectors. 

When using coarse vector or raster datasets, there was the option to select a parcel for 

contextual alteration if it touched a particular context, or if it were dominated by that context, 

or only when that context fi lled the parcel entirely – all such options were applied in various 

circumstances in LCM2000, depending on the need for the amendments to be minor or 

major.

Some rules were applied just to one or a few classifi ed scenes, for example, where the 

seasonality of crops and semi-natural vegetation caused particular confusions at certain 

times of year and needed scene-specifi c corrections. Because each image-combination and 

each landscape-zone exhibited its own specifi c problems, the subtlety of this approach was 

exploited independently for each image-pair; and diff erent rules were evolved for diff erent 

circumstances. Operation of the rules, whilst seemingly complex, could be coded into 

an automated operation that involved very little interactive time. Evolution of the rules 

sometimes needed little more than minor editing of existing computer code.

By building rules into a complex sequence of queries, parcels could be selected based upon a 

large range of criteria: these might draw, for example, upon size, probabilities, second-choice 

class, neighbouring cover, past cover and regional context. As an example, ‘suburban’ land mis-

classifi ed as ‘arable barley’ could have undergone the following steps: parcels would have been 

selected from the ‘arable’ Broad Habitat with ‘barley’ as the class Variant; the problematic 

spectral subclasses of ‘barley’ (i.e. just those parcels with image colours similar to ‘suburban’ 

land) would have been chosen from this set; it would then be possible to retain only the 

larger examples, likely to be fi elds, for example, those >1 ha; the next stage might retain just 

those parcels classifi ed with a low probability, say <30; further refi nements might select just 

those parcels with a ‘suburban’ subclass in the top-fi ve probability list; spatial analysis might 

further restrict this subset to those parcels touching other parcels of ‘urban’ or ‘suburban’ land; 

or perhaps those with dominant urban cover in 1990; the selection procedure might specify 

that the set should only include examples below 250 m altitude; the fi nal set of parcels would 

then be changed from ‘arable barley’ to ‘suburban’ cover.
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Simple or unambiguous rules were generally applied automatically and without inspection 

of the candidate parcels: for, example, the maritime/terrestrial rules were applied without 

previewing the parcels to be aff ected. Th e more complex selection rules were more likely to 

use interactive selection to assess the choice of parcels going forward to contextual alterations. 

When contextual procedures used queries that were built interactively and sequentially, the 

operator could assess the eff ectiveness of each stage of selection: each database query resulted 

in a selection of parcels which would be potential candidates for correction. Th e set of parcels 

was saved, before the next stage of query and selection. If the next query proved over-rigorous 

in its rejection of parcels, then it was possible to go back, modify the criteria for selection or 

rejection, re-run the query, and retain or discard the new set. Th e outcomes of this iterative 

procedure were evaluated by inspection – a subjective approach, but one which was quickly 

applied and remarkably eff ective in operation. In practice, the iterative procedures of query, 

selection and inspection are no more subjective than the iterative steps of training and 

classifi cation. Once created, the set was saved for later contextual alterations.

.. Contextual correction versus thematic class extension

Th e rules applied in the contextual analyses of LCM2000 can each be thought of as off ering 

one of two fundamentally diff erent roles. Some rules simply corrected errors – for example, 

a rule which identifi ed inland examples of ‘littoral sediments’ and corrected them to ‘inland 

bare ground’. Th ese were similar in aim, if more subtle in operation, to those applied in 

LCMGB. Other rules, however, extended our knowledge about a class, adding context to 

help subdivide its component parcels into two or more thematic groups: for example, the acid 

sensitivity mask defi ned ‘acid’, ‘neutral’ and ‘calcareous’ examples of ‘semi-natural grasslands’.

It was necessary to think carefully about the order of operation of contextual rules, as the 

outcome of each could have a signifi cant bearing on any subsequent contextual selection 

process. Scene-specifi c corrections were operated during the fi nal stages of the classifi cation 

process, as needed. Broadly speaking, the greatest source of errors would have the highest 

priority in this process. A second stage of contextual analysis involved those correction 

rules which were applied universally. Th ese were applied after the basic classifi cation was 

completed. Some such rules had such fundamental impacts that they needed application at 

the earliest possible of post-classifi cation stages (see particularly the following discussions 

on maximum likelihood probabilities). Other corrections, also applied universally, also had 

potentially wide-ranging implications and needed early application, for example, corrections 

made through coastal masking. It clearly is important that all corrections were completed 

before the fi nal stages involving the thematic extension of the classifi cation. Th ese fi nal 

rules were applied universally to aff ect the entire UK map and came after scenes had been 

mosaicked into larger sections of map (generally 100 km squares).

In the following sections, contextual corrections are discussed fi rst, and contextual 

refi nements and thematic extensions are covered subsequently.
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.. Contextual corrections

Aggregation of probabilities for MLC

Th e ‘maximum likelihood’ class was not always the most appropriate label for a parcel. 

As an example, if a ‘suburban’ spectral subclass was allocated with 33 probability, but 

‘arable’ subclasses took second to fi fth place with ‘wheat’, ‘barley’, ‘oats’ and ‘linseed’ taking 

respectively 30, 20, 10 and 5 probabilities, it seemed logical to conclude that the ‘arable 

and horticultural’ Broad Habitat was much more likely to apply, with ‘wheat’ as the most 

likely class Variant.

Th e fi rst step in correction was to re-examine the probabilities with which the maximum 

likelihood classes were allocated. Where any maximum likelihood class was allocated with 

a probability <50, the other spectral subclass probabilities were summed at Broad Habitat 

level to see if another Broad Habitat was more appropriate (i.e. if its spectral subclasses 

cumulatively took a dominant percentage of the overall probability). If so, the lead Subclass/

Variant of the Broad Habitat (usually the second choice subclass) took precedence. It is 

recognised that this was a pragmatic solution which does not take full account of the true 

statistical requirements, but it was one which was easily applied and achieved the desired 

eff ect.

Th e probability rule was the fi rst of all the contextual rules to operate as clearly its results had 

a bearing on every other contextual step beyond. In eff ect, it is just an extension or refi nement 

of the maximum likelihood method.

Terrestrial/maritime corrections

LCM2000 used the coastline defi ned in construction of LCMGB. In the vast majority of the 

cases, the coastline was eff ectively unchanged in the decade since the fi rst recording; manual 

intervention corrected minor areas of apparent erosion and accretion. Application of the mask 

was similar in concept to that of 1990. However, the operation was very diff erent. Th ere was, 

fi rst, the potential to examine GIS-intersections rather than using the indirect arithmetic 

process of 1990. Th e parcel-based application gave the scope to identify whether a parcel 

simply touched the ‘shoreline’, or was predominantly maritime or entirely maritime before 

applying the rule-base in corrections. It seemed logical to let a ‘predominantly maritime’ 

location defi ne the context in most cases.

NDVI correction

In a few instances, the  normalised diff erence vegetation index (NDVI) was calculated for the 

parcel and used with the maritime mask to indicate the presence/absence of vegetation. Th is 

allowed extension of maritime corrections to distinguish bare ‘littoral sediment’ or vegetated 

‘saltmarsh’ subclasses. Th e NDVI was also used to refi ne the classifi cation of unknown ‘arable 

and horticultural’ crops to distinguish winter-sown Variants from those which were spring-

sown – an important consideration, for example, to users modelling groundwater-quality or 

bird distributions.
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Elevation correction

Elevation was a valuable determinant of correct and incorrect labelling. It was used to 

identify urban areas above the normal altitude for settlements (e.g. in reality bare hill tops 

or upland quarries). It defi ned the zone within which semi-natural vegetation would be re-

coded to the montane class: an altitude of >600 m (see Ratcliff e & Th ompson, 1988) was set 

for the ‘montane habitats’ and applied to any parcels of vegetation above this threshold. Low 

elevation levels helped to defi ne fl oodplain vegetation which might in some areas be labelled 

as ‘fen, marsh and swamp’. ‘Supra-littoral rocks’ and ‘supra-littoral sediments’ were those bare 

areas with a maritime context and an elevation which exceeded the normal shore levels.

Slope and aspect

Slope and aspect measures were used to select other areas of potential confusion, especially 

those associated with shading on northwest-facing slopes or unusually bright illumination 

on southeast-facing slopes. Diff erential illumination due to aspect had largely been removed 

before classifi cation, by modelling slope and aspect and compensating to give values corrected 

to simulate a theoretical horizontal surface illuminated from directly overhead. However, 

residual diff erences gave distorted refl ectance estimates which caused mis-classifi cations. 

Selection by spectral subclass, slope and aspect identifi ed problem areas. A good example was 

the high incidence of dark ‘coniferous woodlands’ on northwest-facing slopes, seemingly with 

little or no refl ectance, which were often mis-classifi ed as ‘water’. Th e steepness of the slopes 

clearly distinguished the worst such problems and allowed their correction.

Neighbourhood-based corrections

In LCM2000, suburban parcels could be mis-classifi ed as arable land, just as was the 

case with mixed pixels of bare and vegetated cover in LCMGB. Neighbourhood searches 

identifi ed erroneous ‘arable and horticultural’ parcels within ‘suburban’ and ‘urban’ contexts, 

and changes were made to these. It was possible to vary the measure of ‘urban’ context: for 

example, sometimes it might be suffi  cient for a parcel to be dominated by ‘suburban and 

urban’ neighbours; else, it was possible to defi ne that they should be entirely surrounded by 

‘suburban and urban’ parcels. Th e rule was constructed according to whether the impacts of 

the corrections were to be stringent or relatively mild.

Interactive inputs

‘Arable’ fi elds were often mis-classifi ed as ‘urban’ or ‘suburban’ subclasses. Because small 

settlements occur in the farmland context, ‘urban’ areas surrounded by ‘arable’ land could not, 

without question, be changed to the ‘arable’ class. As a result no correction had been made 

for these problems in 1990. Th e GIS allowed greater subtlety in LCM2000 operations. Th e 

selection process fi rst targeted just those parcels classifi ed as particular problematic ‘suburban’ 

spectral subclasses; for these parcels the probability list was checked for ‘arable’ subclasses 

lower in the list. Further sub-selection according to low probability levels was often used 

to refi ne the selection of predominantly erroneous parcels. Further sifting often drew upon 

zonal location (e.g. defi ning just a part of the scene with a confusing soil colour background). 

Finally, manual intervention eliminated the few remaining real ‘urban’/‘suburban’ areas from 

the selection before re-coding the erroneous ‘suburban’ parcels to the relevant ‘arable’ subclass 

(usually the highest scoring in the probability list).
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.. Contextual refi nements and thematic extensions

Consistent class coding

An evolution of the classifi cation (with class-defi nitions published after the commencement 

of mapping in late 1998 ( Jackson, 2000)), meant that some subclass-aggregations evolved and 

the nomenclature altered over time. A rule-base was established to ensure that any outdated 

nomenclature or alphanumeric coding on earlier production runs was updated to give 

consistency of output.

Peat masking

Th e ‘dwarf shrub heath’ and ‘bogs’ Broad Habitats could both comprise cover dominated by 

‘heathers’ and similar ‘ericaceous’ species. ‘Bogs’ are characterised in the fi eld by the presence 

of peatland indicator plant species, which occur in low proportions and consequently have 

little infl uence on spectral signatures. Even the waterlogged character of the ‘bog’ is obscured 

Seas / estuary
Inland Water
Supralittoral rock / sediment
Saltmarsh
Grass heath / moor
Bog
Closed dwarf shrub heath
Open dwarf shrub heath
Montane habitats
Broad-leaf woodland

Coniferous woodland
Arable land
Agricultural grass
Semi-improved grass
Semi-natural grass
Fen / marsh swamp
Suburban
Urban
Inland bare ground
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Figure 14.2 – Classifi ed land parcels of the satellite subscene given in fi gure 14.1. Please consult the 

enclosed CDROM for a full colour version.
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by the dense vegetation cover. Class defi nitions ( Jackson, 2000) state that a ‘peat depth... 

greater than 0.5 m ... is classifi ed as bog for the purposes of the Broad Habitat Classifi cation.’ 

With this in mind, a British Geological Survey map showing peat drift >0.5 m deep was used 

to determine the context of ‘dwarf shrub heath’ and ‘bog’ subclasses. Any ‘heath’ on deep peat 

was re-coded to ‘bog’ and any ‘bog’ which did not coincide with peatland was re-coded to 

‘heath’ (or ‘grass moor’, depending on the key cover-component).

Soil sensitivity masking

Conservation-users wished to distinguish the ‘acid’, ‘calcareous’ and ‘neutral’ components of 

the ‘semi-natural grasslands’. While distinctive spectral characteristics might be associated 

with some grasslands, it was considered impossible to use these universally for accurate 

mapping. An acid-sensitivity map (Hornung et al., 1995) was used to extend labelling of 

semi-natural grasslands. Th is map defi ned acid sensitivity classes based on soils as: highly 

sensitive – pH<4.5 (i.e. truly acid); moderately sensitive – pH>4.5 and <5.5. (treated for these 

purposes as neutral but really slightly acid); and low sensitivity – pH>5.5 (actually with 

neutral and calcareous components). 

CORINE

Th e ‘arable and horticulture’ Broad Habitat includes perennial crops such as ‘berries and 

orchards’. Th ese are diffi  cult if not impossible to distinguish spectrally; hence the class relies 

upon knowledge-based corrections using interpretations made for the CORINE Land 

Cover map (Brown & Fuller, 1996). Th e CORINE vector product had an 25 ha minimum, 

substantially larger than that of LCM2000. Nonetheless, the map helped to identify and 

label the larger examples of orchards.

.. LCM attribute data

Figure 14.2 shows a section of fi nal output map, with the parcel structure overlaid. Th is level 

of detail is available for all the United Kingdom, with some 6.6 million land parcels in all. 

Behind this vector data structure lies a detailed GIS database. Th e attribute database records 

all the information described above: the images used for the generation and classifi cation of 

each parcel; the probabilities for the top-fi ve classes; the parcel-size and the number of core 

pixels. Externally derived contextual attributes, used in corrections and thematic extensions, 

remain with the main database (though licensing arrangements restrict dissemination of 

these data). All contextual analyses were also recorded as parcel attributes, so that each 

parcel’s exact processing history can be traced. As it is possible for a parcel to undergo a series 

of contextual alterations, each step in the sequence of alterations is recorded in the attribute 

database. Th is gives any user the scope to reverse or refi ne contextual alterations, should they 

wish to do so.

.. Impacts in quantitative terms

Th ere was no part of LCM2000 which did not draw upon contextual methods in production. 

All land areas were mapped through image segmentation prior to per-parcel classifi cation. 

Per-pixel classifi cations of the inter-tidal zone were made in context of the pre-defi ned 

maritime zone. Both stages impose contextual constraints on the resulting classifi cation. As 

a consequence, the entire United Kingdom was mapped using spatial-contextual procedures. 

Th e consequent GIS data structure relates closely to the true structure of the landscape. Th is 



Contextual Analyses of Remotely Sensed Images for the Operational Classification of... – 287

is important for all ongoing analyses, including those contextual procedures applied in post-

classifi cation stages.

Th e post-classifi cation procedures played a substantial part in the derivation of accurate 

parcel labels. Knowledge-based corrections were highly signifi cant elements of the LCM2000 

classifi cation; and thematic extensions of the classifi cations using contextual data were 

essential to meet user needs. To quantify the impacts of these post-classifi cations stages, a 

sample of parcels was examined to assess the role played by the diff erent contextual elements. 

First, fi ve 100 km BNG squares were chosen on a stratifi ed random basis, out of forty-six such 

squares dominated by land in the United Kingdom. Th en a sub-sample of parcels from each 

square was taken at random. Th is gave 327675 parcels in all or approximately an 5 sample of 

United Kingdom land area. Th e sample represents the full variety of landscapes including: the 

Highlands of Scotland; marginal and upland areas of North Wales; mixed pastural and arable 

landscapes of North East England and the Scottish borders; pastural, moorland and coastal 

landscapes of South West England; and lowland arable landscapes of East Anglia.

Th e probability rule, which re-examined maximum likelihood allocations, aff ected 5.4 of all 

parcels. Th e use of spectral subclasses in training the classifi er had simply been an attempt to 

provide training data with a statistically normal distribution (Groom et al., 1996). It has been 

an unfortunate consequence that the procedure split the probabilities for any Broad Habitat 

which had many spectral subclasses. It is likely to be a weakness of maximum likelihood 

classifi cation in general that this sort of problem can arise. Th e strength of LCM2000 is 

the depth of its database (Smith & Fuller, 2001) allowing the problem to be examined and 

rectifi ed after classifi cation.

Contextual corrections aff ect 11.9 of all parcels. Th is is a very substantial proportion. It 

emphasises the fact that achievement of the Broad Habitat classifi cation – even the Target 

classifi cation – was only possible with a very substantial element of post-classifi cation 

correction to parcels which had been erroneously labelled by spectrally based classifi cation.

Th e analyses which extend rather than correcting the classifi cations alter 14.8 of class labels. 

Th is substantial impact is not surprising as there had been little or no attempt in training 

and classifi cation to make the distinctions which later would be made by universally applied 

contextual analyses. Th e relatively high proportion of contextually based class-extensions is 

thus a direct measure of how far user-needs outstripped the scope of straightforward spectral 

classifi cations.

In all, 25.7 of parcels were either altered or had their classifi cations extended using post-

classifi cation contextual analyses (or both). In areal terms, 23.7 of the land area under 

examination was aff ected – a value close to, but slightly smaller than, the proportional 

number of parcels. Th is suggests that larger parcels might have needed slightly less contextual 

alteration – not surprising as very small parcels have a limited number of pixels and may give 

poorer estimates of true refl ectances for accurate cover classifi cation.

Th e greatest impact of the alterations was in upland and semi-natural areas – 38.0 of parcels 

were aff ected in the central Highlands of Scotland, compared with just 12.0 in lowland 
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arable farmland East Anglia. Th is is because the peatland and acid sensitivity rules, both with 

extensive impacts, applied most commonly in marginal and upland areas.

While it has not been possible, yet, to quantify exactly what proportion of reallocations has 

been benefi cial, experience and logic suggest that the majority of changes were correctly 

applied. Inspection alone showed that the corrections were extremely important in improving 

the appearance of the map, removing glaring errors and generally giving a ‘cleaner’ appearance 

to the product. Th e thematic extensions of the map have been more mixed in their impacts. 

Most peatland masking correctly identifi ed peatland Habitats, but not all peatland Habitats 

were identifi ed – the peat drift map was very conservative in its estimates of deep peat 

distributions. In contrast, the acid sensitivity rules substantially over-estimated ‘neutral’ and 

‘calcareous’ components of grasslands, though ‘acid’ components were mostly correct. It is a 

consequence of using external data that the accuracy of the resulting map is dependent upon 

the accuracy of the best available contextual data – and that, sometimes, while such data may 

improve one’s knowledge of a class, the inputs may be far from perfect.

It is testimony to the importance of contextual analysis that around a quarter of all parcels 

needed post-classifi cation contextual treatment. It is a clear endorsement of the value of 

the technique in correcting, refi ning and extending image classifi cation procedures. It is 

perhaps, too, a warning as to the limitations of standalone spectral classifi cations. Had 

contextual corrections not been applied, then, without the corrective element, the accuracy of 

LCM2000, thought to be approximately 85 at Target class level (Fuller et al., 2002), would 

have dipped to about 70 – well below levels that most users would have found acceptable. 

Also, had the post-classifi cation extension of classes using contextual data been omitted, then 

the Broad Habitat classifi cation would have been unachievable.

Th e fi nal question which potential users of contextual techniques might ask concerns the 

time taken to apply these procedures, some of them highly interactive. Segmentation and per-

parcel classifi cation undoubtedly takes much longer than per-pixel classifi cations. However, 

the improvements in accuracy and, more importantly, in the data structure and attribute 

depth, give the product an unquestionable advantage over pixel-based outputs. And, because 

the data structure improves post-segmentation manipulations of the data – from training 

though classifi cation to post-classifi cation corrections – some of the time-penalties incurred 

in construction are counteracted by easier analyses in later stages. Realistically, it would 

have to be said that the procedure adds about 50 extra to the time for map-construction. 

However, the extra detail provided over and above that of LCMGB makes this investment 

very worthwhile. It is highly unlikely that any future update of LCM2000 would go back 

to a per-pixel classifi cation. In fact, there is considerable scope for using the parcel-structure 

of LCM2000 to interrogate new images in future updates, potentially saving large amounts 

of time in the process. Indeed, the parcel-based structure may also streamline a wide variety 

of operational applications of the data, resulting in further time-savings in the long run. 

Th e post-classifi cation contextual analyses are less time consuming than the segmentation 

stages. It is estimated that, in the entire sequence of processes, post-classifi cation contextual 

analysis occupies only about 10-15 of the time. Once a reasonably satisfactory map had 

been produced by the iterative processes of training and classifi cation, it was almost always 

quicker to deal with specifi c and relatively minor problems though contextual selection 
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and correction, rather than attempting subtle changes to the training set and making new 

classifi cations. Th is is because, once maps were nearing an acceptable appearance, re-training 

and re-classifi cation appeared always to correct some problems but to introduce new ones, 

and iterations seemed potentially to be never-ending. Th is is simply a refl ection of the fact 

that spectral classifi cation alone was not good enough to serve the needs of the wide ranging 

classifi cation of LCM2000. Contextual procedures thus had an indispensable role to play and 

justifi ed their use.

14.4 Conclusions

Contextually based analyses, through segmentation and parcel-based classifi cation, provided 

a vector data structure which relates far more closely to the real World than one based upon 

the gridded raster structure of the original input images. It therefore helped to analyse 

pixels in the context of their parent land parcel and helped to improve the accuracy and 

usefulness of the data. Th e consequences however were further reaching than just this, as 

the results allowed much more subtle and powerful contextual analyses to be applied after 

classifi cation, further increasing accuracy and extending the thematic details off ered by 

LCM2000. However, thematic extension to include the full range of Broad Habitats was not 

entirely successful. Many of the external datasets were inadequate in defi ning what mostly 

should have been clear-cut contexts for the Broad Habitats. It was found for example that 

the peat drift gave a very conservative picture of the true extent of deep peat soils. Th e acid 

sensitivity mask was biased towards over-recording ‘neutral’ and ‘calcareous’ components. 

Moreover, the 1 km grid-based product was very much coarser than the LCM2000, with 

its minimum mappable unit of >0.5 ha. However, there was no aff ordable alternative dataset 

with better class intervals or a fi ner resolution. Th erefore, these data had to be used if any 

such distinction was to be made. Users must judge for themselves whether the class-intervals 

provide meaningful data for their purposes or whether they are better using the data at 

the Target class level, ‘semi-natural grasslands’, perhaps with their own soils map or other 

contextual data to qualify the grassland types. Th ere are soil maps which could have improved 

both distinctions, but these were only available at a much higher price than the customers 

felt they could justify. Th is begs questions, then, as to whether extensions to a full Broad 

Habitat listing, using inadequate external data, can be justifi ed. Th is is a question more easily 

answered by those who demanded the distinctions. If, with hindsight, the investment in more 

expensive external data is justifi ed, users can of course selectively re-work the data, owing 

to the depth of the LCM2000 attribute database. For other users, the Target classifi cation, 

established in concept before mapping started, represents a realistic assessment of what was 

achievable without extension using questionable external data.

It is an important fi nding, with much wider relevance, that ‘the maximum likelihood class’ is 

not necessarily the ‘most likely’ cover type when spectral subclasses are aggregated to match 

a narrower target classifi cation. Th is observation would probably apply equally elsewhere; but 

for most practitioners, this fact would be obscured by the paucity of probability data held 

on their classifi ed outputs. Th is problem would be especially true of per-pixel classifi cations 

where, at best, it may be possible to record the probability of the top-scoring class and 

generally no more. Producers need to think about such problems and to question whether 
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they can make post-classifi cation corrections similar to those used in LCM2000. Perhaps, 

in fact, there should be refi nements which take account of the statistical issues of class 

aggregation; and improvements in image analysis software might consider class-similarities 

and maximum likelihood aggregations during processing.

In summary, contextual analysis was an essential component of the LCM2000 production 

process, providing a data structure which relates to the real World and is much more 

amenable to further analyses during production and to operational use of the data after 

production. Post-classifi cation procedures were also of relevance for about a quarter of the 

map area. Th ey were crucial in achieving reasonable levels of accuracies. Th ey were essential to 

extend the classifi cations to meet wider user needs. 



Chapter 15

A Contextual Approach to Classify 

Mediterranean Heterogeneous Vegetation 

using the Spatial Reclassifi cation Kernel 

(SPARK) and DAIS7915 Imagery

Raymond Sluiter, Steven M. de Jong, Hans van der Kwast & Jan Walstra

15.1 Introduction

Conventional methods for spectral classifi cation of remote sensing images are per-pixel based. 

As long as the spectral response of the objects is spatially homogeneous, these methods yield 

mapping units of suitable size and uniformity. However, if the spectral response of the objects 

is spatially heterogeneous, these per-pixel classifi ers are inappropriate and result in salt and 

pepper patterns. Especially in vegetation studies such classifi cation results with scatter are 

diffi  cult to use for survey or as input to ecological models. For example open heterogeneous 

vegetation patterns as commonly found in Mediterranean and in semi-arid regions cannot be 

characterised by per-pixel classifi ers in a satisfying way.

Important progress has been made in contextual image classifi cation methods that include 

the spatial domain to analyse imagery (Atkinson & Quattrochi, 2000). Th ese methods 

consider not only the per-pixel spectral information but also the spectral information of 

neighbouring pixels during the classifi cation process. Methods in literature can be divided in 

three broad categories. 

1   Methods based on spectral information captured by the image like the Spatial Co-

occurrence method (Franklin & Peddle, 1990), variogram methods (Curran, 1988; 

Woodcock et al., 1998) and fractal methods (De Jong & Burrough, 1995). 

2  Methods that apply segmentation algorithms on images to identify objects to be classifi ed, 

for example e-Cognition (Defi niens-Imaging, 2003; Blaschke et al., 2004).

3   Methods refi ning previously classifi ed images; these methods are referred to as contextual 

re-classifi ers. Examples are the local frequency distribution method (Wharton, 1982), 

the  Spatial Reclassifi cation Kernel method (Barnsley & Barr, 1996) and the Spatial and 

Spectral Classifi cation method (De Jong et al., 2001).

Th e method used in this study, the Spatial Reclassifi cation Kernel (SPARK) was originally 

developed by Barnsley & Barr (1996). SPARK accounts for the spatial pattern of previously 

spectrally classifi ed pixels and applies a re-classifi cation on the basis of pre-defi ned reference 
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kernels. SPARK is based on the assumption that each land use type can be identifi ed by 

its composition of neighbouring, spectrally classifi ed pixels within a user-defi ned kernel. 

SPARK has been tested so far on urban areas in London, UK (Barnsley & Barr, 1996), in 

Ouagadougou, Burkina Faso (De Jong et al., 2000) and in Th e Netherlands (Harts et al. 

2002).

In this chapter we present and test the use of SPARK in a non-urban environment: semi-

natural Mediterranean heterogeneous vegetation. Th e main objective of this study is to 

create a detailed vegetation map of a Mediterranean area in southern France on the basis 

of airborne spectroscopical DAIS7915 images using the SPARK approach. We describe the 

diff erent stages of the SPARK reclassifi cation process in detail and evaluate the results by 

comparing them to vegetation maps produced by conventional per-pixel classifi cations and to 

data collected during fi eld campaigns.

15.2 The concept of SPARK

Th e Spatial Reclassifi cation Kernel (SPARK) is a contextual re-classifi cation method. Th e 

conceptual idea behind SPARK is that the land use types of interest can be characterised 

by the spatial arrangement and size of objects. An example for natural areas is the spatial 

arrangement of objects like trees, shrubs, grass, bare soil patches and shade. An example for 

urban areas is the spatial arrangement of objects like streets, buildings, bare areas, shade, trees 

and grass. SPARK examines the local, spatial patterns of objects in a square kernel. Based 

on the arrangement of adjacent pixels in the kernel SPARK assigns a new class to the centre 

pixel. Consequently, the SPARK-method consists of three phases (Barnsley & Barr, 1996):

1   Produce a land cover map using any type of spectral classifi er from a remotely sensed 

image, further referred to as the ‘initial land cover map’.

2  Defi ne SPARK decision rules based on local, spatial patterns of objects in typical 

heterogeneous and homogeneous land use types.

3   Reclassify the initial land cover map into heterogeneous and homogeneous land use types, 

based on the decision rules of step 2.

For the fi rst phase, the production of the initial land cover map, several methods can be 

used, for example segmentation and split and merge techniques (Gorte, 1998), unsupervised 

clustering techniques and supervised classifi cation techniques. Until now migrating mean 

clustering (Harts et al., 2002) and maximum likelihood classifi cation (Barnsley & Barr, 1996; 

De Jong et al., 2000) have been used in SPARK studies.

During the second phase reference kernels for known land use types are defi ned. Th ese 

kernels are referred to as characteristic  template matrices ( Tk-matrices) and are based on 

training datasets in the initial land cover map. Each land use type is identifi ed by one or 

more Tk-matrices. Examples of characteristic template matrices for natural vegetation can 

be found in fi gure 15.1. Within each Tk-matrix the frequency and the spatial arrangement of 

land cover classes positioned next to each other as well as diagonally (respectively edge and 

vertex) are counted. Each pair of neighbouring pixels is called an adjacency event. Th e results 
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of counting the adjacency events are expressed by an adjacency event matrix (fi gure 15.1). 

As shown in fi gure 15.1, the dimension of the matrix depends on the number of land cover 

classes, while the sum of the frequencies depends on the kernel size (Barnsley & Barr, 1996).

Th e third phase of the SPARK process involves the counting of the frequency and the spatial 

arrangement of land cover classes in the initial land cover map. For each pixel, an adjacency 

event matrix is produced by means of a moving window. Th e adjacency event matrices of the 

initial land cover map are called M-matrices.

Th e M-matrices of the initial land cover map are compared with all Tk-matrices using the 

following equation (Barnsley & Barr, 1996):

k = 1 - √ 0.5 · N2 ·   (Mij - Tkij
)2

j=1

c

i=1

c

 (15.1)

Where:

M = adjacency event in ij matrix

Tk = template matrix for land use class K

N = total number of adjacency events in the kernel

c = number of land cover classes in the per-pixel classifi ed image

Th e resulting term k is an index of similarity between the M-matrix and the Tk-matrix. Th e 

values can range from 0 to 1. If k equals 0, they are diff erent, while a value of 1 means that 

they are identical.
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Finally, the central pixel in the kernel is assigned to the land use class of the corresponding 

Tk-matrix with the highest k. More template kernels can be defi ned for each output class. 

Th e use of multiple template matrixes has the advantage that subtle diff erences in spatial 

arrangement of the pixels in the initial land cover map can be accounted for, resulting in a 

more accurate classifi cation of a particular pixel (Barnsley & Barr, 1996).

We will describe two points in more detail that determine the successful application of 

SPARK: the selection of representative Tk-matrices and the determination of the optimal 

kernel size:

1   Th e selection of representative Tk-matrices for the SPARK algorithm is an iterative 

process alike to the selection of training areas in conventional image-classifi cation 

procedures. Th e evaluation of k plays an important role in this stage. With the current 

version of SPARK the k of the selected Tk-matrices can be evaluated in a k image and 

a k cross table. Th e k image is a helpful evaluation tool to assess the performance of 

the SPARK algorithm. Th e k image presents the maximum k of all Tk-matrices for a 

pixel and gives the user insight in which land use types are not accurately presented by the 

Tk-matrices and where these land use types are located in the image. A low k indicates a 

poor match with the assigned land use type. Th e k cross table can be used to investigate 

the uniqueness of a Tk-matrix. A Tk-matrix may have a high k with other Tk-matrices 

associated with the same class, but should have a low k with Tk-matrices associated with 

other classes.

    A Tk-matrix should be as representative or unique as possible. However, in practice most 

land cover classes do not have a totally unique response and more Tk-matrices are needed. 

Th eoretically, more complex patterns, with more input classes in the Tk-matrix, are less 

likely to have a unique Tk-matrix. Th is is because the dimension of the adjacency event 

matrix increases and the adjacency event matrix is more variable when more classes are 

involved. Th is is shown by the open forest class in fi gure 15.1. Moreover, the chance that 

a particular M-matrix is similar to one of the Tk-matrices decreases when there are more 

thematic input classes in the input image. As a result the number of thematic classes in 

the input image should not be too large.

2  Th e optimal kernel size depends on the resolution of the images and the range of the 

spatial variation in the initial land cover map (Barnsley & Barr, 1996). Kernels that are 

too large in respect to the land use objects will increase the eff ects of edges, while too 

small kernels possibly do not include all spatial variation. Van der Kwast & Walstra (2001) 

studied the use of the range distance of semivariograms for estimating the optimal kernel 

size, for both  DAIS7915 imagery and Mediterranean vegetation data. Th eir conclusions 

were that variogram analyses do not give unambiguous answers to the question about the 

optimal kernel size. Because in most studies the range of usable kernels is rather limited 

(typically between 3 by 3 and 15 by 15 pixels), kernel size can also be considered like a 

tuning parameter, which can be iteratively obtained by classifying the initial land cover 

map with diff erent kernel sizes and evaluating the accuracy of the results.

    Th eoretically, the optimal kernel size may diff er for diff erent land cover types. Based on 

the SPARK algorithm we can expect the following two results:
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    1    Complex patterns will benefi t less from larger kernel sizes because the chance that a 

particular M-matrix is similar to one of the Tk-matrices decreases, since the variability 

in the adjacency event matrix increases with increasing kernel size.

    2   Pure homogeneous classes will not benefi t from larger kernel sizes because edges will 

infl uence the classifi cation. However, this is inherent for each kernel approach and 

hence the SPARK algorithm, which is exclusively developed to classify heterogeneous 

classes but in practice will be used for both heterogeneous and homogeneous classes.

Th e implications of the choice of number of thematic classes in the initial land cover map, the 

selection of the Tk-matrices and the eff ect of kernel size on the fi nal result will be discussed 

in more detail in the next paragraphs, illustrated by a case study.

15.3 Case study

.. Introduction

We tested the suitability of SPARK for mapping Mediterranean heterogeneous vegetation 

in the  Peyne study area, southern France. During 4 fi eld campaigns in the summer of 1998, 

2000, 2001 and 2002 we collected detailed information on vegetation. We performed the 

SPARK classifi cation on high resolution airborne DAIS7915 imagery which was collected in 

the summer of 1998. We asked the following research questions:

•   What is the best production method for the initial land cover map?

•   How is the performance of SPARK compared to conventional methods?

•   What is the eff ect of kernel size on the overall accuracy of the classifi cation?

•   Is it useful to use diff erent kernel sizes for diff erent classes in one SPARK classifi cation 

run?

.. Study area

Th e Peyne study area is located in the Languedoc in southern France approximately 60 km 

west of Montpellier, central coordinates are 43 33 N, 3 18 E (fi gure 15.2). Th e Languedoc area 

is characterised by a sub-humid Mediterranean climate with hot, dry summers and cool 

winters. Th e area has known a rural depopulation over the last 50 years and farmlands are 

reverting to shrublands and woodlands. Because of these disturbances, various stages of re-

growth and dispersion of forest and shrub communities are found in the Languedoc area 

(Caraux-Garson et al., 1999).

Th e area is located at the fringe of the ‘Massif Central’ and is characterised by various 

geological substrates ranging from sandstone formations, limestone plateaus, dolomite 

formations, volcanic tuff s and volcanic basalt outfl ows. On these geological substrates various 

lithological substrates are found like regosols, lithosols, brown soils and calcareous soils 

(Bonfi ls, 1993). Th e large variation at short distances in these substrates, of elevation, climatic 

factors and human disturbance is responsible for a wide range of growing conditions and 

hence, a large variety of vegetation types.

Th e central part of the area is covered by a Mediterranean oak forest dominated by Quercus 

ilex (holm oak) and by lower ‘garrigue’ shrublands. Th e oak forest is believed to represent 
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the regional Mediterranean climax. Human and natural disturbance of the ecosystem occur 

scattered over the test area due to forest fi res, open mining and ongoing extensive agricultural 

activities. Th e southern part of the area is used for agricultural purposes, mainly for vineyards 

and orchards.

.. Vegetation

Th e natural vegetation in the area is a degraded stage of the evergreen forest, consisting of 

shrubby formations referred to as ‘matorral’ by Tomaselli (1981). Tomaselli’s defi nition of 

matorral is: ‘a formation of woody plants, whose aerial parts are not diff erentiated into trunk 
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and leaves, because they are much ramifi ed from the base, and are of shrubby habit’. Matorral 

can be further discriminated by height and density.

Th e highest and most dense matorral type is named high matorral or maquis (Tomaselli, 

1981). It consists of dense and impenetrable thickets of tall shrubs, 2-5 m high. Th e shrubs 

have densely twiggy branches and small dark green leathery leaves. Th is vegetation type 

may be considered as a regional climax. Quercus ilex (holm oak) and Arbutus unedo 

(strawberry tree) are the most dominant species in these dense maquis vegetations. Usually 

an undergrowth of herbaceous species is absent because little light penetrates through the 

dense shrubs.

Th e Middle matorral type is also named garrigue. Th e height ranges from 0.6 to 2 m. 

Garrigue consists of low scattered bushes interspersed with bare patches of rock, sand or 

stony ground (Le Houérou, 1981). Many of the shrubs are spiny and have small leather-like 

leaves often covered with woolly hairs (Polunin & Huxley, 1972). When the density of the 

shrubs is not too high, an undergrowth of herbaceous species may be present.

Th e lowest matorral type is called low matorral, landes or steppe. Besides some very low 

shrubs (<0.6 m), the vegetation is dominated by herbaceous species: annuals as well as some 

woody perennials (Polunin & Huxley, 1972). In the Peyne area landes is particularly found on 

calcareous soils and abandoned vineyards.

Many diff erent matorral formations are found in the Peyne area. Th ese formations are the 

result of succession towards a higher stage or degradation to a lower stage, the latter due to 

human activities or natural processes, such as soil erosion and fi res.

62
30

A. Maquis: trees >2.0 m
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Figure 15.3 – Hierarchical land cover classifi cation scheme used for fi eld survey and for image 

analysis. Classes used in the 12-class SPARK classifi cation are shown in bold.
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For these dominant vegetation types a hierarchical classifi cation method was developed, 

based on the vegetation composition, coverage and structure. It consists of three levels, 

allowing merging of classes during the classifi cation process. Th e classifi cation scheme was 

used for fi eld survey and yielded the basis for image classifi cation. Th e scheme is shown in 

fi gure 15.3.

.. DAIS imagery

Th e Peyne area was one of the research locations of the European Degradation Monitoring 

project (Hill 1997). In 1997 and 1998, experimental fl ights were carried out by DAIS7915. 

Flown aboard a Dornier 228, DAIS7915 collects images in 72 optical bands with a spectral 

resolution of approximately 25 nm. and in 7 thermal bands with a spectral resolution of 0.9 

µm. (Strobl et al. 1996). Th e images used in this study were collected on June 28th 1998 at a 

nominal altitude of 3300 m. resulting in a spatial resolution of 5.8 meters for the study area. 

A radiometric correction of the DAIS7915 images was carried out on the 72 optical bands as 

described in detail in De Jong et al. (2003). Th e radiometric correction comprised:

1   A cross track illumination correction (Kennedy et al., 1997);

2  A minimum noise fraction (MNF) to correct for system related striping (Schowengerdt, 

1997; Van der Meer & De Jong, 2000);

3   An empirical line correction to convert from radiance to refl ectance using fi eld spectra of 

dark and bright targets (Van der Meer & De Jong, 2001).

An accurate geometrical correction was applied for locating the fi eld observations as precise 

as possible. Geometrical distortions of the images result from altitude deviations and other 

movements of the aircraft. Th e ground control points (GCP’s) were acquired from GPS 

measurements and from topographical maps. A third order polynomial was applied and 

the image was resampled using nearest neighbourhood resampling with an overall RMS of 

2.6 pixels. Finally the refl ectance of the geocorrected image was topographically normalised 

using a Lambertian topographic normalisation model (Colby, 1991) in combination with a 

high resolution DEM produced by IGN France.

.. Field survey

Field campaigns were carried out in the study area during June 1998, June 2000, June 2001, 

June 2002 and September 2002 to collect the necessary data for image analysis. Th is fi eld 

survey comprised the acquisition of ground truth data for both the initial land cover map and 

the SPARK classifi cation map. Some sites were visited each year to check if the classifi cation 

of sites was infl uenced by succession of the vegetation during the time span of the diff erent 

fi eld campaigns. No diff erence in vegetation class could be identifi ed in these plots from 

2000 to 2002. Moreover, some sites were visited twice in June & September 2002 to check 

for seasonal variation. Again no diff erence in vegetation class could be identifi ed between 

these months in the plots. Th erefore we assumed that the use of the 1998 DAIS7915 imagery 

in combination with the data collected in later years was a valid approach. Th e sites with a 

support of 20 by 20 meter were selected in a stratifi ed-random way in the fi eld. On every 

site we collected information of total vegetation cover, plant species cover, plant species 

abundance and vegetation height. Visual observations were checked by line transects and 

vertical photographs of the vegetation. All observations were classifi ed according the 16 

class classifi cation scheme presented in fi gure 15.3. In total 820 sites were sampled. Half of 
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these were used as training sites, while the other half was used for validation and accuracy 

assessments.

.. Modifi ed SPARK NDVI approach

Th e fi rst step in the SPARK approach is the selection of the production method of the 

initial land cover map. In an earlier SPARK pilot study carried out by Van der Kwast & 

Walstra (2001) a maximum likelihood classifi cation with nine classes was used: dense maquis, 

coniferous forest, dense garrigue, dense landes, bare red marls, bright bare soils, dark bare 

soils, water bodies and vineyards. With an overall accuracy of 86.3 this classifi cation was 

quite accurate but not very useful for further SPARK reclassifi cation because of the following 

points:

1   Th e classifi cation method failed to identify bare soil patches necessary for further SPARK 

processing. Bare soil patches could not be detected in between vegetation patches because 

soil patches are also included in the landes and garrigue training areas. Feature space plots 

of the training areas also show confusion between these classes.

2  Heterogeneous vegetation types were not separated by the classifi cation into the 

required pattern of bare soil, grass, shrubs and trees. Instead the image was classifi ed in 

homogeneous clumps of trees, shrubs and grass on which reclassifi cation is not useful.

We tested several alternatives to produce an initial land cover map that better represents the 

heterogeneity of the vegetation observed both in the fi eld and in the DAIS7915 image. Th e 

alternative techniques were supervised approaches like maximum likelihood classifi cation 

using better defi ned classes and training areas, minimum distance to mean classifi cation, 

nearest neighbourhood classifi cation, spectral angle mapping (Kruse et al., 1993), NDVI 

level slicing and unsupervised approaches like isodata and K-means (Schowengerdt 1997). 

In the case of maximum likelihood classifi cation where data volume and multi-collinearity 

of the multiple DAIS7915 bands caused erroneous results we applied a principle component 

transformation and used the fi rst four PCA-bands for classifi cation. We obtained the best 

fi nal classifi cation results with a combination of maximum likelihood classifi cation and 

NDVI level slicing. Th is procedure consists of two steps:

1   Perform a maximum likelihood classifi cation with 7 classes: coniferous forest, maquis, 

garrigue, landes, bare soil, water and vineyard.

2  Next we use the classifi ed classes coniferous forest, bare soil, water and vineyard as a mask 

for a NDVI image. We calculated a Landsat TM compatible NDVI image by averaging 

DAIS bands 8-12 for TM band 3 and by averaging DAIS bands 16-25 for TM band 4. 

Th is NDVI image of the unmasked natural vegetation is linear level sliced into 6 to 32 

NDVI-classes. Th e choice of the number of NDVI-classes will be discussed in the next 

paragraphs. Finally the masked maximum likelihood image and the NDVI image are 

merged into one ‘initial NDVI-land cover map’. An example of an initial NDVI-land 

cover map can be found in fi gure 15.6a.

Based on the initial NDVI-land cover map and fi eld reference data we determined Tk-

matrices for the SPARK classifi cation. We evaluated the k of the selected Tk-matrices with 

the k image and a k cross table. Tk-matrices which had high cross table k values with Tk-

matrices of other classes were excluded from the analysis. Based on the k image some extra 
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kernels were added to obtain an optimal number of Tk-matrices. Kernels of diff erent sizes 

were created by using the same centre pixel for all diff erent kernel sizes.

Finally, we performed the SPARK classifi cation on the combined initial NDVI-land 

cover map. Only 12 classes were used in the accuracy assessment because the number of 

observations in the fi eld of certain classes in the classifi cation scheme of fi gure 15.3 was too 

low. Th ese twelve classes are highlighted in fi gure 15.3. To test the eff ect of kernel size, the 

whole analysis was performed by using kernel sizes of 3 by 3, 5 by 5, 7 by 7, 9 by 9 and 11 by 11 

pixels. To test the eff ect of the number of NDVI-classes the analysis was also performed on 

initial NDVI-land cover maps with 7 maximum likelihood classes merged with 6, 8, 10, 12, 16, 

24, 27 and 32 NDVI-classes computed by level slicing. In combination with the 5 kernel sizes 

the total number of ‘classifi cation runs’ equals 40. For every classifi cation run overall accuracy, 

kappa, producer and user accuracy for individual classes were evaluated, based on the control 

set as proposed by Congalton (1991). We compared the fi nal 12-class SPARK result with the 

classifi cation result of the maximum likelihood classifi cation for the same set of classes.

.. Results

Th e results of the analysis of the fi ve diff erent methods to produce the initial land cover 

map are shown in table 15.1. Th e maximum likelihood classifi cation with 7 classes performs 

best with an overall accuracy of 81.0. Th e next best result is the spectral angle mapper 

classifi cation. Th e diff erence in overall accuracy between these two methods is mainly caused 

by the fact that the spectral angle mapper classifi er cannot accurately distinguish shadows 

from coniferous forest. Th e DAIS7915 PCA image and the maximum likelihood classifi cation 

are shown in fi gure 15.4a and 15.4b, it is clearly visible that the heterogeneous vegetation in the 

image is classifi ed in homogeneous clumps of trees, shrubs and grass on which the SPARK 

reclassifi cation algorithm cannot be applied successfully.

To compare the results of the SPARK reclassifi cation with results of conventional methods 

we also performed the maximum likelihood classifi cation with 7, 10, 12 and 15 thematic land 

cover classes (table 15.2). Th e overall accuracy values are shown in fi gure 15.5. Th e overall 

accuracy drops to 60.7 as soon as heterogeneous vegetation types are taken into account 

in the 10-class classifi cation. Th e 12-class maximum likelihood classifi cation with an overall 

accuracy of 56.2 will be the reference to compare the 12-class SPARK classifi cation to as 

discussed in the previous section. Th e 12-class maximum likelihood classifi cation is shown in 

fi gure 15.6b.

Table 15.1 – Classifi cation accuracy for 7 classes (coniferous forest, maquis, garrigue, landes, bare soil, 

water and vineyard) using diff erent methods.

Classifi cation method Overall 
accuracy %

Kappa Remarks

Maximum likelihood 81.0 0.78
Spectral angle mapper 77.3 0.73 Coniferous forest over-classifi ed
Parrallelipiped 60.4 0.52 Many pixels unclassifi ed
Minimum distance to mean 56.9 0.50 Coniferous forest not classifi ed
Mahalanobis distance 51.8 0.44 Water over-classifi ed
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0 1000 m

a

Figure 15.4a – DAIS7915 colour composite (R, G, B=PCA1,PCA2,PCA3). Green corresponds to 

vegetation, red to bare soil and agriculture. In the black & white image, light tones correspond to 

vegetation, dark tones to bare soils and low vegetation. Please consult the enclosed CDROM for a 

full colour version.

Figure 15.4b – Maximum likelihood classifi cation result with 7 classes: the heterogeneous vegetation 

in the image is classifi ed in homogeneous clumps of trees, shrubs and grass. Please consult the enclosed 

CDROM for a full colour version.

0 1000 m

Coniferous forest

Dense garrigue

Dense landes

Dense maquis

Bare soil and concrete / water

b
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Overall accuracy and kappa values of the result of the SPARK classifi cation are shown in 

table 15.3. Th is table shows the results of 40 combinations of NDVI-classes and SPARK 

kernel sizes. Th e highest overall accuracy and kappa values for a certain kernel size are shown 

in bold. Th e best SPARK results, with an overall accuracy of 64.5 and kappa value of 0.61 

are obtained with a 3 by 3 kernel in combination with 27 NDVI-classes. Figure 15.6c shows 

SPARK classifi cation results for the combination of 27 NDVI-classes and a kernel size of 

3 by 3. Figure 15.6d shows SPARK classifi cation results for the combination of 10 NDVI-

Table 15.2 – Class composition of the 7, 10, 12 and 15 class classifi cations. 
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classes and a kernel size of 11 by 11. Th e accuracy value of 27 NDVI-classes is relatively high 

compared to the results of larger kernels: when kernel size increases the best results are 

obtained with low NDVI class values. In general overall accuracy and kappa decrease with 

increasing kernel size due to aggregation and edge eff ects. If we consider the results of 27 

NDVI-classes, the values shown in italics in table 15.3, the overall accuracy decreases from 

64.5 with a 3 by 3 kernel to 55.0 with an 11 by 11 kernel. Th e spatial eff ects of a larger kernel 

size on the classifi cation result are also shown in fi gure 15.6d. Th is fi gure shows that with 

larger kernels more aggregation occurs at the expense of small scale variation.
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Figure 15.5 – Maximum likelihood overall accuracy values for 7, 10, 12 and 15 Classes.

Table 15.3 – Overall accuracy and kappa values of the fi nal SPARK classifi cation. Source fi les are 

initial NDVI-land cover maps with indicated NDVI-classes. Highest values per kernel size are 

shown in italics.

Overall Accuracy % Kernel 3 Kernel 5 Kernel 7 Kernel 9 Kernel 11

6 NDVI classes 60.1 63.1 62.2 61.0 57.8
8 NDVI classes 60.4 61.3 61.0 58.8 56.2
10 NDVI classes 61.8 62.0 62.0 59.3 58.0
12 NDVI classes 62.1 61.5 60.7 58.8 57.1
16 NDVI classes 62.8 61.1 60.6 59.4 56.0
24 NDVI classes 63.4 61.0 59.9 57.9 54.2
27 NDVI classes 64.5 60.2 59.2 57.4 55.0
32 NDVI classes 62.9 60.1 60.5 58.1 54.9

Kappa Kernel 3 Kernel 5 Kernel 7 Kernel 9 Kernel 11

6 NDVI classes 0.56 0.59 0.58 0.57 0.53
8 NDVI classes 0.56 0.57 0.56 0.54 0.52
10 NDVI classes 0.58 0.58 0.58 0.55 0.55
12 NDVI classes 0.58 0.57 0.56 0.54 0.53
16 NDVI classes 0.59 0.57 0.56 0.55 0.51
24 NDVI classes 0.59 0.57 0.55 0.54 0.50
27 NDVI classes 0.61 0.56 0.55 0.53 0.50
32 NDVI classes 0.59 0.56 0.56 0.53 0.50
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62
30

Dense garrigue

Landes

Bare soil and concrete / water / vineyard /
coniferous forest

Dense maquis

Discontinuous maquis

Open maquis with
shrub undergrowth

Discontinuous garrigue

Open maquis with
herb undergrowth

Open garrigue
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b

Figure 15.6 – a) Initial NDVI-land cover map with 27 NDVI-classes, b) 12-Class maximum 

likelihood classifi cation results, c) SPARK classifi cation results with kernel size 3 and 27 NDVI-

classes and d) SPARK classifi cation results with kernel size 11 and 10 NDVI-classes. Please consult 

the enclosed CDROM for a full colour version.
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We focus on the best performing SPARK classifi cation (kernel size 3, 27 NDVI-classes) 

and discuss these results in more detail here. In table 15.4, the user and producer accuracy 

of the individual classes are shown for the conventional maximum likelihood and SPARK 

classifi cation. In addition, table 15.5 shows the confusion matrix of the SPARK classifi cation. 

As expected, homogeneous classes like coniferous forest, bare soil, water and vineyard do 

not show large diff erences between the maximum likelihood classifi cation and the SPARK 

classifi cation. On average, heterogeneous vegetation classes show an increase in both 

producer and user accuracy. Th e following classes are more remarkable: dense maquis and 

landes show a major increase in both user and producer accuracy. Discontinuous garrigue 

cannot be detected at all with the maximum likelihood method, while SPARK could at least 

classify some pixels right. Th e open maquis classes show an increase in user accuracy, but 

controversially a decrease in producer accuracy for open maquis with herb and shrubs.

Except from analysing per pixel statistics we also evaluated the results visually to determine if 

the spatial arrangement of the classes makes sense. In fi gure 15.7 we compare a subset of the 

12-class maximum likelihood classifi cation results (fi gure 15.6b) to the SPARK classifi cation 

results with kernel size 3 and 27 NDVI-classes (fi gure 15.6c). Th e red line in fi gure 15.7 

roughly indicates the border between the more closed maquis dominated vegetation types 

in the north and the more open garrigue dominated vegetation types in the south. In the 

northern part, the 12-class maximum likelihood classifi cation classifi es many dense maquis as 

open maquis and open garrigue, the SPARK classifi cation shows a more consistent pattern of 

dense maquis. In the southern part open maquis is over-classifi ed by the 12-class maximum 

likelihood classifi cation at cost of other heterogeneous vegetation types. SPARK detects for 

example patches of dense landes and open garrigue instead of open maquis, which matches 

Table 15.4 – User and producer accuracy of the individual classes for the 12-class maximum 

likelihood- and 12-class SPARK classifi cation.

Class Maxlike: 
Producer
accuracy

Maxlike:
User

accuracy

SPARK:
Producer
accuracy

SPARK:
User

accuracy

Difference
Producer
accuracy

Difference
User

accuracy

Coniferous forest  87.1  100  97.6  100  10.5  0
Dense maquis  41.6  66.3  60.6  79.1  19  12.8
Discontinuous maquis  29.6  13.3  44.4  26.7  14.8  13.4
Open maquis with 
shrubs

 28.7  25.8  31.3  54.6  2.6  28.8

Open maquis with 
herbs & shrubs

 57.8  13.1  35.6  34  -22.2  20.9

Dense garrigue  4.2  35.7  22.9  29  18.7  -6.7
Discontinuous
garrigue

 0  0  32.6  19.7  32.6  19.7

Open garrigue with 
herbs

 22.2  8.1  36.1  17.3  13.9  9.2

Landes  22.9  32.7  53.5  42.1  30.6  9.4
Bare soils, tarmac & 
build up

 93.7  91.1  86  99  -7.7  7.9

Water  100  100  97  100  -3  0
Vineyard  63.6  64.3  59.6  79.7  -4  15.4

Average:  + 8.8  + 10.9



A Contextual Approach to Classify Mediterranean Heterogeneous Vegetation... – 307

Table 15.5 – Confusion matrix of the 12-class SPARK classifi cation.
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Dense garrigue

Landes

Bare soil and concrete / water
vineyard / coniferous forest
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Open maquis with shrub undergrowth

Discontinuous garrigue

Open maquis with herb undergrowth

Open garrigue

Border between maquis & garrigue
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250 m0

Figure 15.7 – Upper: subset of the 12-class maximum likelihood classifi cation results (overall 

accuracy: 56.2). Lower: the SPARK classifi cation results with kernel size 3 and 27 NDVI-classes 

(overall accuracy 64.5). Th e line roughly indicates the border between the maquis dominated 

vegetation types in the north and the garrigue dominated vegetation types in the south. Please 

consult the enclosed CDROM for a full colour version.
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the fi eld observations. In such complex areas the SPARK method is superior to the other 

approaches.

To investigate if it is useful to use diff erent SPARK kernel sizes for certain classes in one 

SPARK classifi cation run, we calculated table 15.6. To improve readability we consider user 

and producer accuracy in one table. For the best performing NDVI-class for a certain kernel 

size (italic items in table 15.3) we calculated the diff erence between the SPARK and the 12-

class maximum likelihood classifi cation for the user and producer accuracy. Th e value shown 

in the table is the average of both diff erence values. Hence, high positive values indicate 

a better performance of the SPARK approach compared to the conventional maximum 

likelihood method. It is clearly visible that homogeneous classes bare soil (class 14), water 

(class 15) and vineyard (class 16) perform worse with larger kernel sizes due to the increased 

eff ects of edges. Discontinuous maquis (class 3), open maquis (class 5) and discontinuous 

garrigue (class 9) perform best with a small 3 by 3 kernel. On the other hand, dense garrigue 

(class 8), dense landes (class 12) and dense maquis (class 2) perform better with larger kernels.

.. Discussion and conclusion

In this chapter we investigated the usefulness of a contextual image analysis method, the 

Spatial Reclassifi cation Kernel referred to as SPARK, to classify complex Mediterranean 

vegetation types. As shown by Van der Kwast & Walstra (2001) there is a signifi cant 

degree of spectral overlap between vegetation classes hampering conventional per-pixel 

classifi cation. Of the conventional methods the maximum likelihood classifi er performs best, 

but as soon as heterogeneous vegetation classes are taken into account the accuracy decreases 

due to spectral confusion. For 12 heterogeneous vegetation classes, the SPARK results (overall 

accuracy 64.5) are better than the maximum likelihood results (overall accuracy 56.2). It is 

important to note that the improvements of the SPARK results diff er from vegetation class 

to vegetation class as might be expected. All heterogeneous classes show a signifi cant increase 

of accuracy but less complex heterogeneous vegetation types (landes and dense maquis) show 

more improvement than more complex vegetation classes (open garrigue with herbs, dense 

Table 15.6 – Average diff erence between producer and user accuracy of individual classes of the 12-

class SPARK classifi cation compared to the conventional 12-class maximum likelihood classifi cation. 

Highest values per class are shown in italics.

Class Kernel 3 Kernel 5 Kernel 7 Kernel 9 Kernel 11

Coniferous forest  5.3  -0.5  5.8  5.1  6.5
Dense maquis  15.9  16.1  17.7  16.7  12.3
Discontinuous maquis  14.1  5.6  10.1  10.2  8.2
Open maquis with shrubs  15.7  8.0  5.4  15.1  3.5
Open maquis with herbs & shrubs  -0.6  -8.5  7.6  9.0  -9.1
Dense garrigue  6.0  6.8  10.0  12.3  16.6
Discontinuous garrigue  26.2  19.7  16.2  6.7  6.1
Open garrigue with herbs  11.6  16.9  17.1  20.4  18.2
Landes  20.0  23.2  28.7  24.4  26.3
Bare soils, tarmac & build up  0.1  -0.9  -8.2  -9.2  -12.5
Water  -1.5  -3.0  -12.0  -12.0  -12.0
Vineyard  5.7  5.0  5.6  -0.3  -6.4
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garrigue) as shown in table 15.4 and 15.6. Th is can be related to the fact that more complex 

patterns, with more input classes in the Tk-matrix, are less likely to have a unique Tk-matrix 

as described in paragraph 15.2. In general, the increase in accuracy is not spectacular but 

SPARK is successful in detecting vegetation classes which cannot be distinguished at all by 

conventional methods. Th is matches intuitive expectations that contextual classifi ers perform 

better on spectrally heterogeneous objects.

An important factor is the choice of the initial land cover map. As shown in fi gure 15.4b 

a conventional classifi cation with 7 basic classes produces an initial land cover map that is 

too homogeneous to be used for SPARK reclassifi cation. In this study the best initial land 

cover map we produced was a hybrid map consisting of a maximum likelihood classifi cation 

of homogeneous areas merged with a NDVI-level sliced map of heterogeneous areas. Th e 

choice of the number of NDVI-classes depends on kernel size. When using a small kernel 

the SPARK classifi cation performs better with a relatively high number of NDVI-classes 

(27), while all the classifi cations with larger kernel sizes perform best with a low number of 

NDVI-classes. We could explain this behaviour by the eff ect that a larger number of classes 

in the input image can cause the number of matrices to become too large, which decreases 

the chance a particular M-matrix is similar to one of the Tk-matrices. Th e 3 by 3 kernel with 

27 NDVI-classes seems to be an optimum between the number of possible M- and Tk-

matrices in this study.

Visual comparison of the SPARK classifi cation results with the maximum likelihood results 

shows that the vegetation classes produced by SPARK are more consistent and that the 

locations of the vegetation classes match the fi eld observations.

In this study, overall accuracy decreases with increasing kernel size. However if we 

investigate user and producer accuracy of individual classes (table 15.6) some patterns emerge. 

Homogeneous classes do not benefi t from larger kernel sizes because edge eff ects induced 

with larger kernels decrease the accuracy. Th e accuracy of heterogeneous classes diff ers with 

kernel size: complex patterns seem to be best classifi ed with small kernels, while less complex 

patterns are better classifi ed with larger kernels. Th is can again be related to the fact that 

complex patterns produce a larger amount of diff erent M- and Tk-matrices which decreases 

the similarity chance. Th e observations in this study justify the idea to develop a version of 

SPARK that can use diff erent kernel sizes for diff erent classes in one SPARK classifi cation 

run.

Note: Th e SPARK software used in this study is available for download at http://

pcraster.geog.uu.nl
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Acronyms

ADEOS Advanced Earth Observing Satellite ( Japan)

AI Area Image

AISA Airborne Imaging Spectrometer for Applications

ANN Artifi cal Neural Network

ART Adaptive Resonance Th eory

ASAR Advanced Synthetic Aperture Radar

ASD Analytical Spectral Devices Inc.

ASTER Advanced Spaceborne Th ermal Emission and Refl ectance Radiometer

AVHRR Advanced Very High Resolution Radiometer

AVIRIS Airborne Visible/Infrared Imaging Spectrometer

CASI Compact Airborne Spectrographic Imager

CBERS China-Brazil Earth Resources Satellite

CCD Charge Coupled Device

CCSM Cross Correlogram Spectral Matching

CIR Colour Infrared photography

CM Co-occurrence Matrix

CNSD Conditional Negative Semi Defi niteness

CV Cross Variogram

DAIS7915 Digital Airborne Imaging Spectrometer

DEM Digital Elevation Model

DGPS Diff erential Global Positioning System

DLR German Aerospace Establishment

DN Digital Number

DRU Desertifi cation Response Unit

EM End Member

EO Earth Observation

EOS Earth Observing System

ERTS Earth Resources Technology Satellite

ESA European Space Agency

ETM+ Enhanced Th ematic Mapper (Landsat)

FBC Frequency-Based Contextual Classifi er

FCM Fuzzy C-Means

FFBP Feed Forward Back Propagation

FNEA Fractal Net Evolution Approach

FOV Field of View

FPCS Feature Oriented Principal Components Selection

FWHM Full Width Half Max

GCP Ground Control Point

GER Geophysical Environmental Research Inc.

GI Gradient Image
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GIFOV Ground Instantaneous Field of View

GIS Geographical Information System

GLCM Gray-Level Co-occurence Matrix

GPS Global Positioning System

GSLIB Geostatistical Software Library

GTI Geostatistical Texture Image

GTO Geostatistical Texture Operators

HNN Hopfi eld Neural Network

HPDP Hierarchical Patch Dynamics Paradigm

HPF High Pass Filter

H-Res High resolution

HRU Hydrological Response Unit

HyMap Hyperspectral Mapper

IDL Interactive Data Language

IFOV Instantaneous Field of View

IGN Institut Géographique National

IHS Intensity Hue Saturation

IPB Iberian Pyrite Belt

IS Imaging Spectrometry

ISI Image Set

JPL Jet Propulsion Laboratory

k-NN k-Nearest Neighbour Estimator

LAI Leaf Area Index

LCM2000 Land Cover Map 2000 of Great Britain

LCMGB Land Cover Map of Great Britain

L-Res Low Resolution

MA Madogram

MAP Maximum a Posteriori Probability Approach

MAUP Modifi able Areal Unit Problem

MCS Marker-Controlled Segmentation

MedSpec Mediterranean Spectral database

MERIS Medium Resolution Imaging Spectrometer (Envisat)

MESMA Multiple Endmember Spectral Mixture Analysis

MI Mean Image

MIR Middle Infrared

ML Maximum Likelihood

MLR Multiple Linear Regression

MLP Multi-Layer Perceptron

MNF Maximum Noise Fraction

MODIS Moderate Resolution Imaging Spectroradiometer

MOSA Multiscale Object-Specifi c Analysis

MRF Markov Randon Fields

MSFI Multi-Source Forest Inventory

MSS Multi-Scale Segmentation

MSS Multi-Spectral Scanner

NDVI Normalized Diff erence Vegetation Index
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NIR Near Infrared

NOAA National Oceanic and Atmospheric Administration

OI Original Image

OK Ordinary Kriging

ORM Object Relationship Modelling

OSA Object-Specifi c Analysis

OSU Object-Specifi c Upscaling

PA Producers Accuracy

PC Principal Component

PCA Principal Component Analysis

PCM Possibilistic c-means

Pixel Picture Element

PMT Pyramidial Median Transform

PMWT Pyramidial Median Wavelet Transform

PPI Pixel Purity Index

PS Productive Series

PSF Point Spread Function

PV Pseudo Cross Variogram

QMF Quadrature Mirro Filters

RBD Relative Absorption Band-Depth

REA Representative Elementray Area

REP Red Edge Position

RF Random Function

RGB Red Green Blue

RMS Root Mean Square

RMSE Root Mean Square Error

RO Rodogram

RS Remote Sensing

RT Radiative Transfer Function

RV Regionalized Variable

SAM Spectral Angle Mapper

SAR Synthetic Aperture Radar

SAVI Soil Adjusted Vegetation Index

SDI Spatial Data Integration approach

SDn Scale Domain

SFF Spectral Feature Fitting

SK Simple Kriging

SLAR Side Looking Airborne Radar

SMA Spectral Mixture Analysis

SNR Signal to Noise Ratio

SPARK Spatial Re-classifi cation Kernel

SPOT Système Pour l’Observation de la Terre

SR Source Rock

SRF Spectral Response Function

SSC Spatial and Spectral Classifi er

SV Simple Variogram
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SVM Support Vector Machine

SWIR Shortwave Infared

TGO Texture Generated Operators

TIR Th ermal Infrared

TIROS Television Infrared Observation Satellite

TM Th ematic Mapper (Landsat)

TRMM Tropical Rainfall Measuring Mission

TS Texture Spectrum

TU Texture Unit

UA Users Accuracy

USGS United States Geological Survey

UTM Universal Transverse Mercator map projection

VHR Very High Spatial Resolution

VI Variance Image

VIS Visible part of the electromagnetic spectrum

VMAX Maximum Variance

VMESMA Variable Multiple Endmember Spectral Mixture Analysis

VMIN Minimum Variance

VNIR Visible and Near Infrared

VTT Technical Research Centre of Finland

WI Watershed Image

WT Wavelet Transform
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